Supporting Information

High catalytic efficiency of amorphous TiB₂ and NbB₂ nanoparticles

for the hydrogen storage of $2LiBH_4/MgH_2\ system$

Xiulin Fan, Xuezhang Xiao, Lixin Chen,^{*} Xinhua Wang, Shouquan Li, Hongwei Ge

and Qidong Wang.

Key Laboratory of Advanced Materials and Application for Batteries of Zhejiang

Province, Department of Materials Science and Engineering, Zhejiang University,

Hangzhou 310027, PR China

E-mail: <u>lxchen@zju.edu.cn</u>

Fig. S1 Mass spectra of released gases from the mixture during ball milling: (a) for the synthesis of NbB₂; (b) for the synthesis of TiB₂.

Fig. S2 SEM images of as-synthesized NbB₂ (a), (b); and TiB₂ (c), (d).

Fig. S3 XRD patterns for synthesized TiB_2 and NbB_2 after heat treatment at 700 °C for 12 h. Broad peaks indicate that nanocrystallites are formed during heat treatment.

Fig. S4 TEM (a) and HRTEM (b) image for synthesized TiB_2 after heat treatment at 700 °C for 12 h, HRTEM (c) image for synthesized NbB₂ after heat treatment at 700 °C for 12 h. The inset in (a) is the corresponding SAED, which exhibits a conventional diffraction rings of a nanocrystalline phase. Uniform nanocrystallites with size of ~ 3 nm can be observed in (b) and (c).

Fig. S5 MS spectra of the $2LiBH_4/MgH_2$ composite: (a) undoped; (b) doped with nanoNbB₂; (c) doped with nanoTiB₂.

Fig. S6. SEM image (a) and corresponding EDS maps of Mg (b), B (c) and Ti (d) for the nanoTiB₂ doped $2LiBH_4/MgH_2$ after dehydrogenation in the 3rd cycle. The elements of Mg, B and Ti exhibit a homogeneous dispersion in the composite.

Fig. S7 FTIR spectra of nanoTiB₂-doped $2LiBH_4/MgH_2$: (a) after ball milling; (b) after hydrogenation of 3^{rd} cycle; (c) after hydrogenation of 5^{th} cycle; (d) after dehydrogenation of 6^{th} cycle at 400 °C.