Ca(BH₄)₂-LiBH₄-MgH₂: A Novel Ternary Hydrogen Storage System with Superior Long-Term Cycling Performance[†]

Mingxia Gao,^a Jian Gu,^a Hongge Pan,^{* a} Yiliu Wang,^a Yongfeng Liu,^a Chu Liang,^a Zhengxiao Guo^b

Supplementary information

Fig. S1 XRD pattern of the as-synthesized Ca(BH₄)₂

Fig. S2 XRD patterns of the dehydrogenation intermediates and product of the $Ca(BH_4)_2+2LiBH_4+2MgH_2$ ternary system at different dehydrogenation temperatures (a) and the amplified pattern of the dehydrogenated product at 550 °C (b).

^{*} Corresponding author. E-mail: <u>hgpan@zju.edu.cn</u> (H. Pan); Tel: +86-571-87952615; Fax: +86-571-87952615.

Fig. S3 FTIR spectra of the dehydrogenation intermediates and product of the $Ca(BH_4)_2+2LiBH_4+2MgH_2$ ternary system at different dehydrogenation temperatures.

Fig. S4 SEM images of the as-milled $Ca(BH_4)_2+2LiBH_4+2MgH_2$ mixture (a), and the 1st dehydrogenation (b), 1st hydrogenation (c), 2nd dehydrogenation (d), 9th hydrogenation (e) and 10th dehydrogenation (f) products dehydrogenated at 370 °C for 30 min, and hydrogenated at 350 °C for 18 h.

Fig. S5 XRD patterns of the dehydrogenation (a) and re-hydrogenation (b) products of the $Ca(BH_4)_2+2LiBH_4+2MgH_2$ system dehydrogenated at 370 °C for 30 min, and re-hydrogenated at 350 °C for 18 h for different cycles.

Fig. S6 XRD patterns of the present synthesized CaMgH_{3.72} and its product heated to 260 °C.

Fig. S7 Dehydrogenation curve of the present synthesized CaMgH_{3.72}.

Fig. S8 Dehydrogenation curves of the $Ca(BH_4)_2+2LiBH_4+2MgH_2$ system of the 1st and the 2ndrounds,andtheinitialdehydrogenationcurvesofthe $0.85Ca(BH_4)_2+2LiBH_4+1.9MgH_2+0.1CaMgH_{3.72}$ and $0.7Ca(BH_4)_2+2LiBH_4+1.9MgH_2+0.1CaMgH_{3.72}$ and $0.7Ca(BH_4)_2+2LiBH_4+1.9MgH_2+0.1CaMgH_{3.72}$

Fig. S9 XRD patterns of the product of the 1st round hydrogenated product of the ternary system heated to 260 °C and dwelling for 10 min as well as the original hydrogenated product.

System	Desorption rate (wt% $H_2 \min^{-1}$)		
Ca(BH ₄) ₂ +2LiBH ₄ +2MgH ₂	0.336		
Ca(BH ₄) ₂	0.178		
Ca(BH ₄) ₂ +MgH ₂	0.141		
Ca(BH ₄) ₂ +2LiBH ₄	0.018		
2LiBH ₄ +MgH ₂	0.013		

Table S1 Desorption rates of the main desorption stages of the different systems

System	E_a (kJ mol ⁻¹)			riangle H (kJ mol ⁻¹ H ₂)
	1 st -step	2 nd -step	3 rd -step	overall
Ca(BH ₄) ₂ +2LiBH ₄ +2MgH ₂	162	147	143	40.3
BM Ca(BH ₄) ₂	155	209		52.2
Ca(BH ₄) ₂ +MgH ₂	158	191		45.5
2LiBH ₄ +MgH ₂	169	168		44.6

Table S2 The apparent activation energy (E_a) of dehydrogenation and the dehydrogenation reaction enthalpy $(\triangle H)$ of the different systems