Electronic Supplementary Information

In situ Au-catalysis fabrication of branch-type SnO₂ nanowires

by a continuous gas-phase route for dye-sensitized solar cells

Xiaoyu Hou, Yanjie Hu,* Hao Jiang, Junchao Huo, Yunfeng Li, and Chunzhong Li*

Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials

Science and Engineering, East China University of Science and Technology, 130

Meilong Road, Shanghai 200237, China

*Corresponding author: Tel.: +86-21-64252055, Fax: +86-21-64250624

E-mail address: czli@ecust.edu.cn (C. Z. Li), huyanjie@ecust.edu.cn (Y. J. Hu)

Fig. S1 EDS of as-prepared SnO_2 nanowires. Cu element derives from the copper mesh for TEM.

Fig. S2 The nitrogen adsorption-desorption curve of as-prepared SnO₂ nanowires.

Fig. S3 SEM image of as-synthesized SnO_2 octahedral by FSP (precursor without HAuCl₄)

Fig. S4 TEM image of SnO₂ nanoparticles synthesized by FSP route (a); XRD pattern of as-prepared SnO₂ nanoparticles, all diffraction peaks are matched with rutile SnO₂ JCPDS 41-1445 (b);Nitrogen adsorption-desorption spectrum of SnO₂ nanoparticles (c). The specific surface area of SnO₂ nanoparticles is 78.8 m²g⁻¹.

Fig. S5 SEM image of SnO_2 nanowires photoanode porous film (before and after TiCl₄ post-treatment)

Fig. S6 SEM image of Branch-type SnO₂ nanowires photoanode film after TiCl₄ post-treatment (a); XPS spectrum of Branch-type SnO₂ NWs film after TiCl₄ treatment, insets are high-resolution XPS of Sn3d, Ti2p, respectively (b); XRD pattern of branch-type SnO₂ NWs photoanode film after TiCl⁴ post-treatment (c).

As shown in Fig. S6a, the branch-type SnO₂ nanowires after TiCl₄ treatment still

remain the original 1-D nanowire structure. It has been reported that TiCl₄ treatment results in a ultrathin TiO₂ shell layer on the surface of SnO₂.^{1,2} The thickness of TiO₂ layer is about 1~2 nm, determining the unidentified differences from the SEM images before and after TiCl₄ treatment. X-ray photoelectron spectroscopy (XPS) analysis of SnO₂ nanowires DSSCs films after TiCl₄ treatment was characterized from 0 to 1300 eV (Fig. S6b). It can be observed that C1s, O1s, Ti2p and Sn3d peaks were detected and high-resolution spectra of Ti and Sn are shown in the inset. The peaks located at 458.5 and 463.9 eV in the Ti2p scan should be attributed to the levels of $Ti2p_{3/2}$ and $Ti2p_{1/2}$ spin-orbital splitting photoelectrons in the Ti^{4+} chemical state, respectively. The Sn peaks of Sn3d_{5/2} and Sn3d_{3/2} can be assigned to Sn²⁺/Sn⁴⁺ chemical states. Fig. S6c shows the XRD pattern of SnO2 nanowires films after TiCl4 treatment. The diffraction peaks are all well matched with rutile SnO₂ (JCPDS No.14-1445). The intensity of SnO₂ characteristic peaks is different from the XRD pattern of as-prepared branch-type SnO₂ nanowires, which may be ascribed to disturb of the FTO surface. There are no diffraction peaks associated with anatase or rutile TiO₂ which could not preciously proves the TiO₂ layer is amorphous or crystallites owing to the extremely ultrathin layer³ although many literatures suggest the anatase TiO_2 under the condition of annealing at about 400 °C.^{4,5} Combining the results of XPS and XRD, we could draw the conclusion that TiCl₄ post-treatment has not changed the chemical composition and crystallinity of SnO₂ nanowires.

As summarized in Table 1, the introduction of TiO₂ layer on SnO₂ nanowires causes the η , Voc, Jsc, FF increased from 1.16 to 4.23%, 358.1 to 737.4 eV, 6.93 to 10.60 mA cm⁻² and 46.6 to 54.7%. The dye-loading of SnO₂ nanowires cells after TiCl₄ treatment is also increased by 51.9% (3.91 to 5.94 ×10⁻⁸ mol cm⁻²). The SnO₂ with band edge of 300 mV more positive than of TiO₂ could lead to a decreased Voc. The higher Jsc and FF may be attributed to energy barrier formed at the surface SnO₂/TiO₂, which will be investigated in the future. The remarkable enhancement on the photovoltaic performance of SnO₂-based DSSCs cells after TiCl₄ treatment successfully confirms that TiCl₄ solution post-treatment effectively overcome some defects of SnO₂ cells, especially for the limited Voc and dye-loading.

Reference

- 1. E. Ramasamy, J. Lee, J. Phys. chem. C., 2010, 114, 22032.
- J. Xing, W. Q. Fang, Z. Li, H. G. Yang, Ind. Eng. Chem. Res., 2012, 51, 4247.
- 3. K. Park, Q. F. Zhang, B. B. Garcoa, X. Y. Zhou, Y. –H. Jeong, G. Cao, Adv. Mater., 2010, 22, 2329.
- T. W. Hamann, A. B. F. Martinson, J. W. Elam, M. J. Pellin, J. T. Hupp, J. Phys. Chem. C., 2008, 112, 10303.
- 5. M. Pal, J. G. Serrano, P. Santiago, U. Pal, J. Phys. Chem. C., 2007, 111, 96.