Electronic Supplementary Information(ESI)

Magnetic Mesoporous Silica Hybrid Nanoparticles For Highly Selective Boron Adsorption

Madhappan Santha Moorthy, Deok-Jin Seo, Hyun-Jin Song, Sung-Soo Park, Chang-Sik Ha*

Department of Polymer Science and Engineering, Pusan National University, Busan-609-735, Korea.

Fig. S1 Low-angle XRD pattern of MSH@NH-(OH)₂ adsorbent.

Fig. S2 FTIR spectrum of MSH@NH-(OH)₂ adsorbent.

Fig. S3 N₂ adsorption-desorption and mesopore size distribution (inset) of MSH@NH-(OH)₂.

Fig. S4 (a) SEM and (B) TEM images of the MSH@NH-(OH)₂.

Fig. S5 TGA curve of MSH@NH-(OH)₂.

Fig. S6 Boron adsorption efficiency of MSH@NH₂ (\blacksquare) and MSH@NH-(OH)₂ (\bullet) as a function of the pH.

Fig. S7 Boron adsorption efficiency on FMMSH@NH-(OH)₂ adsorbent in the presence of sulphates and chlorides of Na, K, Ca and Mg ions.

Table S1 Textural properties of the MSH	@NH-(OH)2.
---	------------

Sample	d ₁₀₀ (nm) ^a	$a_0 (nm)^b$	Wall thickness (nm) ^c	SBET (m²/g)	Pore volume (cm ³ /g) ^d	Pore diameter (nm) ^e
MSH@NH-(OH) ₂	3.4	3.92	1.62	567	1.6	2.3

^a Calculated from XRD analysis ^b $a_0 = 2d100/\sqrt{3}$ ^c Wall thickness = a_0 – pore diameter ^d Calculated from adsorption branch of nitrogen isotherm using BJH model ^e Calculated from volume adsorbed of P/P0 at 0.5

Adsorbent	$Q_m/mmol g^-$ Reference	
FMMSH@NH-(OH) ₂	2.37	This study
glycidol modified terpolymer	0.83	[22a]
glucose modified mesoporous silicas	0.38	[23b]
D-glucamine modified silicas	1.55	[23c]
Polymer gel	2.1	[43a]
Terpolymer beads	1.77	[43b]
Sacride modified mesoporous silicas	1.85	[43c]
Cotton cellulose	0.69	[43d]
Hydroxyl functionalized polymers	3.21	[S1]
D-glucamine modified polymer microspheres	0.03	[S2]
Calcium alginate gel beads	1.40	[\$3]
Resin XSC-700	0.12	[S4]
Curcumin containing activated carbon	0.08	[85]
Amine modified tannin gel	0.12	[\$6]
Salicylic HCHO polymer resin	1.36	[S7]
Modifiedvermiculite	0.15	[S8]
Modified clays	0.03	[S9]

Table S2 Boron adsorption capacity of various adsorbents as reported in the literature^a

^a In this table, we list only several representative adsorbents employed for boron adsorbent.

Reference

- [S1] M. Gazi, G. Galli, N. Bicak, Sep. Purif. Technol. 2008, 62, 484.
- [S2] J. Wolska, M. Bryjak, N. Kabay, J. Environ. GeoChem. Health, 2010, 32, 349.
- [S3] M. Ruiz, C. Tobalina, H. Demey-Cedeno, J.A. Barron-Zambrano, A.M. Sastre, *React. Funct. Polym.* 2013, 73, 653.
- [S4] X. Xiang, C. Bai-Zhen, S. Xi-Chang, C. Ya, J. Cent. South. Univ. 2012, 19, 2768.
- [S5] A.A. Halim, N.A. Roslan, N. Awang, M.H. Mustapa, M.F. Arshad, *Emp. Sci. Technol.* 2011, 39, 308.
- [S6] S. Morisada, T. Rin, T. Ogata, Y.-H. Kim, Y. Nakano, Water Research, 2011, 45, 4028.
- [S7] S. Yu, H. Xue, Y. Fan, R. Shi, Chem. Eng. J. 2013, 219, 327.
- [S8] M. Kehal, L. Reinert, L. Duelauk, Appl. Clay Sci. 2010, 48, 561.
- [S9] S. Karahan, M. Yurdakoc, Y. Seki, K. Yurdakoc, Colloid and Interface Sci. 2006, 293, 36.