Supporting Information

Multifunctional nitrogen-rich "brick-and-mortar" carbon as high performance supercapacitor electrodes and oxygen reduction electrocatalysts

Dingshan Yu,^a Kunli Goh,^a Li Wei,^a Hong Wang,^a Qiang Zhang,^b Wenchao Jiang,^a Rongmei Si,^a and Yuan Chen^{*a}

- a. School of Chemical and Biomedical Engineering, Nanyang Technological University,
 62 Nanyang Drive, Singapore 637459
- b. Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China

E-mail: <u>chenyuan@ntu.edu.sg;</u> Fax: +65-65156046; Tel: +65-63168939

 Table S1. Comparison of the capacitive performance of N-enriched carbon materials in aqueous electrolytes in literatures.

N-enriched carbon materials	S _{BET}	Electrolyte	Cg	Ref.
	$(m^2 g^{-1})$		(F/g)	
N-rich hydrothermal carbon from D- glucosamine	598	6M KOH	220	16
		$1 M H_2 SO_4$	300	
Aminated Graphene Honeycombs	666	6М КОН	192	33
B, N codoped carbon using ionic liquid	376	6M KOH	247	15
C ₁₆ mimBF ₄				
N-rich carbon from the polyvinylidene fluoride (PVDF)/melamine mixture	560	1M H ₂ SO ₄	310	34
N-rich composite of CNTs and carbon derived from melamine	400	1M H ₂ SO ₄	160	35
Activated and N-rich CNT	568	7М КОН	58	36
N doped porous carbon fiber	562	6М КОН	202	37
ammoxidized coals	660-1200	$4M H_2 SO_4$	175	38
		7М КОН	145	
templated mesoporous N-enriched carbon materials	800	1M H ₂ SO ₄	201	39
N-enriched carbon with large mesopores	1330	$5M H_2 SO_4$	211	40
O-rich carbons from seaweed polymer	173	$5M H_2 SO_4$	198	41
N-enriched carbon from melamine-mica	6-86	$1 M H_2 SO_4$	115	42
		6M KOH	198	
CNT/N-rich carbon composite	157	$1 M H_2 SO_4$	100	43
Functionalized three-dimensional hierarchical porous carbon	2870	6М КОН	318	44
N-doped activated graphene	705	6M KOH	420	45
This work	957	6М КОН	361	

Fig. S1 TEM images of the G and G-16/P-C samples

Fig. S2 Comparison of specific surface area from different composite carbon samples.

Fig. S3 (a) Micropore size distribution, and (b) mesopore size distribution of G, P-C, and G-16/P-C

Fig. S4 High resolution N1s X-ray photoelectronic spectrum of G/P-C.

Fig. S5 CV curves of G/P-C in 6 M KOH at different scan rates.

Fig. S6 Galvanostaic charge-discharge curves of G/P-C in 6 M KOH at various current densities.

Fig. S7 Galvanostaic charge-discharge curves of G in 6 M KOH at various current densities.

Fig. S8 Galvanostaic charge-discharge curves of P-C in 6 M KOH at various current densities.

Fig. S9 Comparision of specific capacitance from different composite carbon samples.

Fig. S10 X-ray diffraction pattern of porous Co₃O₄ nanorods.

Fig. S11 A typical SEM image of porous Co₃O₄ nanorods.

Fig. S12 CV curves of porous Co₃O₄ nanorods in 6 M KOH at different scan rates.

Fig. S13 CV curves of asymmetric $G/P-C//Co_3O_4$ supercapacitors at different scan rates with a potential window of 1.6 V in 6 M KOH.

Fig. S14 The cycle performance of asymmetric $G/P-C//Co_3O_4$ supercapacitors at the charge/discharge current density of 5 A g⁻¹ for 4000 cycles.

Fig. S15 Chronoamperometric responses for ORR of the G/P-C/GC electrode and the 20 wt% Pt–C/GC electrode upon addition of 1 M methanol after about 230 s at –0.25 V.