Hollow polylactic acid microcapsules fabricated by gas/oil/water and bubble template methods

${ }_{5}$ Daichi Sakurai, ${ }^{a}$ Jay Jesus Molino Cornejo, ${ }^{a}$ Hirofumi Daiguji,* ${ }^{a}$ and Fumio Takemura ${ }^{b}$

${ }^{a}$ Division of Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8563, Japan
${ }^{b}$ Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba 305-8565, Japan

${ }_{10}$ S1 Chemical potentials for each component in liquid and gas phases

If we assume that gas and liquid components form a weak solution in the liquid phase and an ideal mixture in the gaseous phase, then the explicit expressions for chemical potentials are as follows:

$$
\begin{align*}
\mu_{1}^{\prime \prime} & =v_{0} p_{01}^{\prime \prime}+R T \ln \left(\frac{p_{1}^{\prime \prime}}{p_{01}^{\prime \prime}}\right), \tag{S1}\\
\mu_{2}^{\prime \prime} & =\mu_{20}^{\prime \prime}+R T \ln \left(\frac{p_{2}^{\prime \prime}}{p^{\prime}}\right), \tag{S2}\\
\mu_{1}^{\prime} & =v_{0} p^{\prime}+R T \ln \left(\frac{c_{2}^{\prime}}{c_{1}^{\prime}+c_{2}^{\prime}}\right)=v_{0} p^{\prime}-R T \ln \left(1+\frac{c_{2}^{\prime}}{c_{1}^{\prime}}\right) \approx v_{0} p^{\prime}-R T\left(\frac{c_{2}^{\prime}}{c_{1}^{\prime}}\right) \text { at } c_{2}^{\prime} \ll c_{1}^{\prime}, \tag{S3}\\
\mu_{2}^{\prime} & =\mu_{20}^{\prime}+R T \ln \left(\frac{c_{2}^{\prime}}{c_{2 \mathrm{~s}}^{\prime}}\right), \tag{S4}
\end{align*}
$$

where R and T are the gas constant and temperature, respectively; $v_{0}, p^{\prime \prime}{ }_{01}$, and $c^{\prime}{ }_{2 s}$ are the specific volume of pure liquid, the saturation pressure of pure liquid, and the saturation concentration of the gas in the liquid phase, respectively; $\mu^{\prime \prime}{ }_{20}$ and μ_{20}^{\prime} are the chemical potentials of the gas in gaseous and liquid phases when the gas is dissolved up to the saturation concentration $\left(p^{\prime \prime}{ }_{2}=p^{\prime}\right.$ and $c_{2}^{\prime}=c^{\prime}{ }_{2}$). ${ }_{20}$ From the equality of chemical potentials in liquid and gas phases for each component, i.e., $\mu^{\prime \prime}{ }_{1}=\mu_{1}^{\prime}$ and $\mu^{\prime \prime}{ }_{2}=\mu_{2}^{\prime}$, eqs 3 and 4 can be obtained.

S2 Stability of possible equilibrium states for bubbles in a closed volume of liquid

In our earlier study, ${ }^{1}$ we obtained the condition for bubble stability from the differential of the total potential of a closed system of a ${ }_{25}$ liquid-gas solution containing q bubbles of radius r_{b} for the virtual displacement of equilibrium radius at constant p^{\prime}, T, and N_{1}. The condition for bubble stability was expressed as follows (eq 8 in Ref. 1):

$$
\begin{equation*}
q>\frac{3 c_{01}^{\prime} V ' R T}{4 \pi r_{\mathrm{b}}^{3} K_{\mathrm{H}}}\left[\left(\frac{K_{\mathrm{H}}}{p_{1}^{\prime \prime}}+\frac{p_{1}^{\prime \prime}}{K_{\mathrm{H}}}-2\right) \frac{3 p_{1}^{\prime \prime} p_{2}^{\prime \prime} r_{\mathrm{b}}}{2 \gamma K_{\mathrm{H}}}-\left(\frac{K_{\mathrm{H}}}{p_{2}^{\prime \prime}}+\frac{p_{1}^{\prime \prime}}{K_{\mathrm{H}}}\right) \frac{p_{2}^{\prime \prime}}{K_{\mathrm{H}}}\right]^{-1}, \tag{S5}
\end{equation*}
$$

where K_{H} is the Henry's law constant. For a weak solution, the saturation concentration of air in the liquid phase, $c^{\prime}{ }_{2 s}$, is given by

$$
\begin{equation*}
c_{2 \mathrm{~s}}^{\prime}=c_{01}^{\prime} \frac{p^{\prime}}{K_{\mathrm{H}}} \tag{S6}
\end{equation*}
$$

${ }_{30}$ If the total molar amount of $\mathrm{CH}_{2} \mathrm{Cl}_{2}, N_{1}$, is explicitly shown using eq 1 , the stability condition S 5 is transformed as follows:

$$
\begin{equation*}
q>\frac{3 N_{1} R T}{4 \pi r_{\mathrm{b}}^{3} K_{\mathrm{H}}}\left[\left(\frac{K_{\mathrm{H}}}{p_{1}^{\prime \prime}}+\frac{p_{1}^{\prime \prime}}{K_{\mathrm{H}}}-2\right) \frac{3 p_{1}^{\prime \prime} p_{2}^{\prime \prime} r_{\mathrm{b}}}{2 \gamma K_{\mathrm{H}}}-\left(\frac{K_{\mathrm{H}}}{p_{2}^{\prime \prime}}+\frac{p_{1}^{\prime \prime}}{K_{\mathrm{H}}}-\frac{p_{1}^{\prime \prime}}{p_{2}^{\prime \prime}}\right) \frac{p_{2}^{\prime \prime}}{K_{\mathrm{H}}}\right]^{-1} . \tag{S7}
\end{equation*}
$$

By using eqs 3-5, 7, 8, and S6, the stability condition S7 is transformed as follows:

$$
\begin{align*}
-\left(\frac{3 N_{1} R T}{q 4 \pi r_{\mathrm{b}}^{3} K_{\mathrm{H}}}+1-\frac{p_{1}^{\prime \prime}}{K_{\mathrm{H}}}\right)-\left(\frac{p_{1}^{\prime \prime} p_{2}^{\prime \prime}}{K_{\mathrm{H}}^{2}}-\frac{3 r_{\mathrm{b}} p_{2}^{\prime \prime}}{2 \gamma}\left(1-\frac{p_{1}^{\prime \prime}}{K_{\mathrm{H}}}\right)^{2}\right) & >0 \\
\left\{\frac{c_{2 \mathrm{~s}}^{\prime}}{c_{01}^{\prime}}\left(N_{1}-q \eta \frac{p_{01}^{\prime \prime}}{R T} \frac{4}{3} \pi r_{\mathrm{b}}^{3}\right)+q \frac{p^{\prime}}{R T} \frac{4}{3} \pi r_{\mathrm{b}}^{3}\right\} \frac{d}{d r_{\mathrm{b}}}\left(1-\eta \frac{p_{01}^{\prime \prime}}{p^{\prime}}+\frac{2 \gamma}{r_{\mathrm{b}} p^{\prime}}\right) & >0 \tag{S8}\\
+\frac{d}{d r_{\mathrm{b}}}\left\{\frac{c_{2 \mathrm{~s}}^{\prime}}{c_{01}^{\prime}}\left(N_{1}-q \eta \frac{p_{01}^{\prime \prime}}{R T} \frac{4}{3} \pi r_{\mathrm{b}}^{3}\right)+q \frac{p^{\prime}}{R T} \frac{4}{3} \pi r_{\mathrm{b}}^{3}\right\}\left(1-\eta \frac{p_{01}^{\prime \prime}}{p^{\prime}}+\frac{2 \gamma}{r_{\mathrm{b}} p^{\prime}}\right) & \frac{d N_{2}}{d r_{\mathrm{b}}}
\end{align*}>00
$$

This result shows that the bubble is stable at $d N_{2} / d r_{\mathrm{b}}>0$ for each $N_{2}-r_{\mathrm{b}}$ curve shown in Figs. 1a and 1 b .

${ }_{5} \mathbf{S 3}$ Radius distributions of microbubbles in a droplet of $\mathbf{C H}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}$ solution of PLA

Figure S1 shows a bright-field image of microbubbles inside a droplet of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of PLA (300 kDa) when the initial concentration of PLA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was $10 \mathrm{~g} \mathrm{~L}{ }^{-1}$. The central part of a droplet was observed just after sonication [see Fig. 3a (center)]. The bubble size was quite uniform and did not change considerably during the observation.

${ }_{10}$ Fig. S1 Bright-field image of microbubbles inside a droplet of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of PLA (300 kDa). The initial concentration of PLA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was $10 \mathrm{gL}^{-1}$.
Figure S 2 shows the radius distributions of microbubbles in a droplet of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of PLA (300 kDa). The initial concentrations of PLA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were 5,10 , and $20 \mathrm{~g} \mathrm{~L}^{-1}$. The mean values (m), standard deviations (σ), and polydispersity indices $(\mathrm{PI}=$ standard deviation/mean) of the bubble radius for the initial concentrations of 5,10 , and $20 \mathrm{~g} \mathrm{~L}^{-1}$ were ($m=3.78 \mu \mathrm{~m}, \sigma=1.23 \mu \mathrm{~m}$, and $\mathrm{PI}=$ $32.5 \%),(m=4.23 \mu \mathrm{~m}, \sigma=1.26 \mu \mathrm{~m}$, and $\mathrm{PI}=29.8 \%)$, and $(m=6.34 \mu \mathrm{~m}, \sigma=2.63 \mu \mathrm{~m}, \mathrm{PI}=41.5 \%)$, respectively. As the initial ${ }_{15}$ concentration of PLA increased, the size increased and the uniformity deteriorated.

Fig. S2 Radius distributions of microbubbles in a droplet of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of PLA (300 kDa). The initial concentrations of $\mathrm{PLA}^{\text {in }} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ were 5,10 , and $20 \mathrm{~g} \mathrm{~L}^{-1}$.

${ }_{5} \mathrm{~S} 4$ Radius distribution of microdroplets of $\mathbf{C H}_{2} \mathbf{C l}_{2}$ solution of $\mathbf{P L A}$ in an aqueous medium

Figure S 3 shows a bright-field image of microdroplets of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of PLA (300 kDa) in an aqueous medium after the droplet of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of PLA and the surrounding aqueous solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were mixed by a homogenizer for 10 s at 3500 rpm . The initial concentration of PLA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was $10 \mathrm{~g} \mathrm{~L}^{-1}$ and the initial concentration of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in water was the saturation concentration at room temperature and atmospheric pressure. Each droplet contained several microbubbles.

Fig. S3 Bright-field image of microdroplets of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of PLA (300 kDa) in an aqueous medium after the droplet of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of PLA and the surrounding aqueous solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were mixed by a homogenizer for 10 s at 350 rpm . The initial concentration of $\mathrm{PLA} \mathrm{in}^{2} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was 10 g L and the initial concentration of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in water was the saturation concentration at 1 atm and room temperature.

Figure S 4 shows the radius distributions of microdroplets of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of PLA (300 kDa) in an aqueous medium when the droplet 15 of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of PLA and the surrounding aqueous solution were mixed by a homogenizer for 10 s at 2500,3500 , and 4500 rpm . The mean values (m), standard deviations (σ), and polydispersity indices ($\mathrm{PI}=$ standard deviation $/$ mean) of the microdroplet radii for rotation speeds of 2500,3500 , and 4500 rpm were ($m=16.9 \mu \mathrm{~m}, \sigma=7.12 \mu \mathrm{~m}$, and $\mathrm{PI}=41.2 \%),(m=13.6 \mu \mathrm{~m}, \sigma=8.73 \mu \mathrm{~m}$, and $\mathrm{PI}=$ 64.4%), and ($m=14.3 \mu \mathrm{~m}, \sigma=8.46 \mu \mathrm{~m}, \mathrm{PI}=59.2 \%$), respectively. As the rotation speed increased from 2500 to 3500 rpm , the size increased and the uniformity deteriorated, but the data for 3500 and 4500 rpm were close to each other.

Fig. S4 Radius distributions of microdroplets of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of PLA (300 kDa) in an aqueous medium when a droplet of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of PLA and the surrounding aqueous solution were mixed by a homogenizer for 10 s at 2500,3500 and 4500 rpm . The initial concentration of $\mathrm{PLA}^{2} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was 10 $\mathrm{g} \mathrm{L}^{-1}$.

REFERENCES

(1) H. Daiguji, S. Takada, J. J. Molino Cornejo and F. Takemura, J. Phys. Chem. B 2009, 113, 15002-15009.

