Energy efficient role of Ni/NiO in PdNi nano catalyst used in alkaline DEFC

Abhijit Dutta and Jayati Datta

Electrochemistry & Fuel cell Laboratory, Department of Chemistry, Bengal Engineering and Science University, Shibpur,

Howrah – 711 103, West Bengal, India

Corresponding Authors: jayati_datta@rediffmail.com (J Datta), ad.chem@yahoo.com (A.Dutta)

XRD analysis for calculation of Lattice parameters

The crystalline structures of the supported catalysts were revealed through the powder XRD technique using SEIFERT 2000 diffractometer operating with CuK_{α} radiation ($\lambda = 0.1540$ nm) generated at 35 kV and 30 mA. Scans were recorded at 1° min⁻¹ for 2θ values between 2 to 90 degrees, whereas the peak profile of the (220) reflection of Pd face-centered-cubic (f.c.c) structure (from 62° to 75) was also recorded at the very low scan rate of 0.5° min⁻¹ and fitted to a Rietveld algorithm optimizes ¹ by using 'Fullprof Suite Program (Version 2.05), so that the position of the peak maximum (θ_{max}) could be obtained precisely degree for alloying calculations. The peak position (θ_{max}) is obtained from curve fitting by using 'Fullprof Suite Program (Version 2.05)' software and used for the calculation of lattice parameter (Equation 1).

$$a = \frac{\sqrt{2}\lambda_{K\alpha}}{\sin\theta_{\text{max}}} \tag{1}$$

The fitted curve and their corresponding reliability factors (R-factors) have been included in Figure S1 and Table S1 respectively.

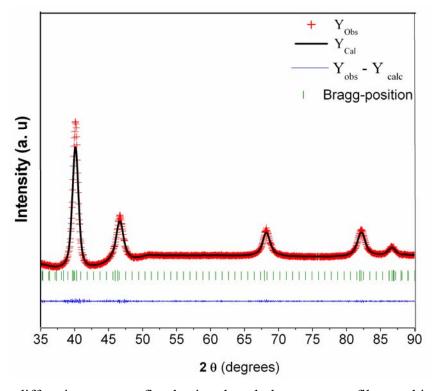
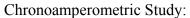
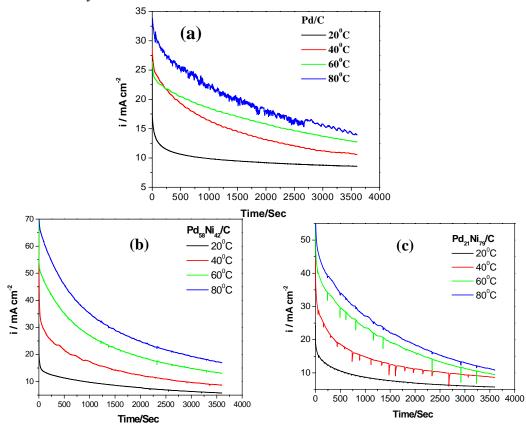




Fig. S 1: X-ray diffraction patterns fitted using the whole pattern profile matching method

Electro-catalysts	Lattice Constant (nm)	(220) diffraction FWHM (deg)	R -factors R_p , R_{wp} , R_p , R_I , R_F
Pd ₅₈ Ni ₄₂ /C	0.38891± 0.00002	1.35255±0.00003	$R_p=1.29$ $R_{wp}=1.73$ $R'_p=1.81$ $R_I=1.87$ $R_F=2.19$
Pd ₃₇ Ni ₆₃ /C	0.38731± 0.00001	1.33101±0.00003	$R_p = 1.89$ $R_{wp} = 2.33$ $R_p = 2.59$ $R_1 = 2.66$ $R_F = 2.93$
Pd ₂₁ Ni ₇₉ /C	0.38613± 0.00001	1.31273±0.00001	$R_p = 2.13$ $R_{wp} = 2.57$ $R''_p = 2.65$ $R_I = 2.78$ $R_{F} = 2.99$

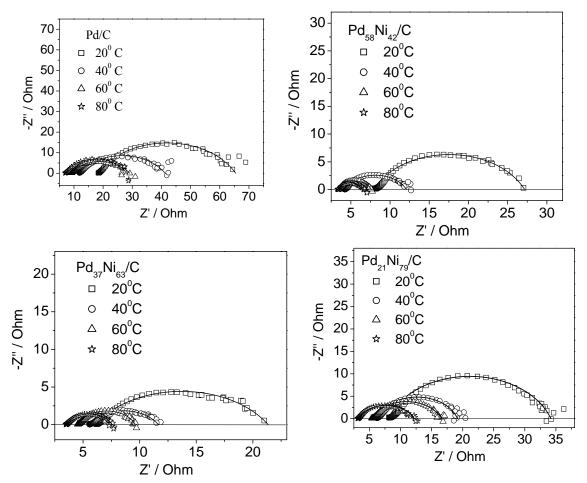

Table S 1: Lattice constant and FWHM of (220) phase of synthesized catalyst

Fig.S2. Chronoamperometric studies of ethanol oxidation on (a) Pd/C (b) Pd₅₈Ni₄₂/C (c) Pd₂₁Ni₇₉/C electrodes at a constant potential of –300mV (vs. Hg.HgO) at different temperatures

Impedance Spectroscopy:

Fig. S3: Nyquist plots of ethanol oxidation in 0.5 M NaOH + 1.0 M EtOH at -0.3 V for (a) Pd/C (b) Pd₅₈Ni₄₂ (c) Pd₃₇Ni₆₃ (d) Pd₂₁Ni₇₉ at different temperatures.

References:

[1]. B. Tobey, Int. Centre for Diffraction Data, Powder Diffr., 2006, 21, 67-70