Supporting Materials

Porous Tubular Carbon Nanorods with Excellent Electrochemical Properties

HongxiaYu,^{a,b} QiaoZhang,^b Ji Bong Joo,^b Na Li,^b GeondaeMoon,^b Shengyang Tao,^b LianjunWang,^{*a} and Yadong Yin^{*b}

Figure S1. TEM images of nickel complex@RF resin core-shell nanorods prepared without additional solvent (a) and with different carrier solvents: (b) 200 proof ethanol, (c) isopropanol, (d) butanol, (e) pentanol and (f) hexanol.

Figure S2. XRD patterns of (a) nickel complex@RF@ silica carbonized at 600 °C for 4 h under Ar atmosphere and (b) tubular carbon nanorods.

Figure S3 TEM images showing the control of aspect ratio using the different amount of nickel solution (a) 1.04 mmol, (b) 1.2 mmol, (c) 1.36 mmol, (d) 1.52 mmol and (e) 1.68mmol.

Figure S4. XRD patterns of tubular carbon nanorods obtained at different carbonization temperatures.

Figure S5. Effect of the number of layers on capacitance. The sample was carbonized at 700 oC.