Supporting Information

Amidoamine Dendron-Based Co-adsorbents: Improved

Performance in Dye-Sensitized Solar Cells

Jing Xu,[‡] Hongwei Wu,[‡] Xinru Jia,^{*} Hany Kafafy and Dechun Zou^{*}

Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China. Tel.: +86-10-62752102; Fax: +86-10-62751708;

E-mail: xrjia@pku.edu.cn

Scheme S1. The synthetic procedures of dendritic molecules EG0, EG1 and EG2.

Synthetic procedures and structural characterization

The synthetic procedures of dendritic molecules EG0, EG1 and EG2 are shown in Scheme S1. Three targeted molecules were prepared by the similar strategies. Therefore, for convenience, only the synthetic methods of EG1 are given in detail in the following section.

Synthesis and characterization of BuGn

The dendron G1-NH₂ (3.64 g, 9.38 mmol) was dissolved in the solvent of CHCl₃. The *n*-butyric anhydride (5.93 g, 37.50 mmol)/CHCl₃ mixed solution was dropwise added into the G1-NH₂ solution in an ice-salt bath. The reaction solution was stirred for 48 h (24h for the synthesis of BuG0) at room temperature and then evaporated under vacuum to remove excess solvent. The pure BuG1 was obtained by precipitation in diethyl ether and isolation using a silica column. The synthesis of BuG0 and BuG2 employed the similar process as that of BuG1.

BuG1: Yield: white solid, 45.1%. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.79$ (s, 2H, CON*H*), 7.54 (s, 1H, CON*H*), 7.15 (s, 1H, CON*H*), 5.57 (s, 1H, OCON*H*), 3.36 (s, 8H, CONHC*H*₂*CH*₂NHCO), 3.18 (d, 2H, CONH*CH*₂CH₂), 2.69 (s, 4H, -N(*CH*₂)*CH*₂), 2.53 (s, 2H, CONH*CH*₂*CH*₂N<), 2.43 – 2.26 (m, 4H, >NCH₂*CH*₂CON*H*), 2.18 (t, 4H, NHCO*CH*₂*CH*₂CH₃), 1.78 – 1.55 (m, 4H, NHCO*CH*₂*CH*₂CH₃), 1.39 (d, 9H, (*CH*₃)₃OCO), 0.96 (dt, 6H, NHCO*CH*₂*CH*₂*CH*₃). ¹³C NMR (100 MHz, CDCl₃): $\delta = 174.28$, 173.37, 156.20, 79.20, 52.56, 50.20, 39.67, 39.28, 38.43, 33.81, 28.41, 19.11, 13.76. ESI MS: Calcd for C₂₅H₄₈N₆O₆: 528.36; Found: 529.4 (M+H)⁺, 551.4 (M+Na)⁺.

BuG0: Yield: white solid, 44.4%. ¹H NMR (400 MHz, CDCl₃): $\delta = 6.52$ (s, 1H, CON*H*CH₂), 5.24 (s, 1H, CH₂N*H*CO), 3.43 – 3.31 (m, 2H, CH₂C*H*₂NHCO), 3.32 – 3.16 (m, 2H, CONHC*H*₂CH₂), 2.16 (t, 2H, COC*H*₂), 1.74 – 1.57 (m, 2H, COCH₂C*H*₂), 1.44 (s, 9H, (C*H*₃)₃CO), 0.94 (t, 3H, CH₂CH₂C*H*₃). ¹³C NMR (100 MHz, CDCl₃): $\delta = 173.85$, 156.96, 79.51, 40.41 (d), 38.56, 28.34, 19.10, 13.71. ESI MS: Calcd for C₁₁H₂₂N₂O₃: 230.16; Found: 231.2 (M+H)⁺, 253.2 (M+Na)⁺, 269.1 (M+k)⁺.

BuG2: Yield: white solid, 44.8%. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.83 - 7.70$ (m, 5H, CON*H*), 7.22 (s, 4H, CON*H*), 5.66 (s, 1H, OCON*H*), 3.35 (s, 16H, CONHC*H*₂C*H*₂NHCO), 3.26 (s, 4H, CONHC*H*₂CH₂N<), 3.22 - 3.14 (m, 2H, OCONHC*H*₂CH₂), 2.88 - 2.66 (m, 12H, >NC*H*₂CH₂CONH), 2.64 - 2.49 (m, 6H, CONHCH₂C*H*₂N<), 2.36 (t, 12H, >NCH₂C*H*₂CONH), 2.19 (dd, 8H, NHCOC*H*₂CH₂CH₃), 1.71 - 1.56 (m, 8H, NHCOCH₂C*H*₂CH₃), 1.43 (s, 9H, (C*H*₃)₃OCONH), 0.94 (q, 12H, NHCOCH₂CH₂CH₂OL). ¹³C NMR (100 MHz, CDCl₃): $\delta = 174.35$, 173.44, 172.70, 156.40, 79.19, 52.73, 50.54, 39.57, 39.38, 38.42, 37.68, 34.10, 28.48, 19.14, 13.78. ESI MS: Calcd for C₅₃H₁₀₀N₁₄O₁₂: 1124.76; Found: 1125.8 (M+H)⁺, 1147.8 (M+Na)⁺.

Synthesis and characterization of DGn

The dendron BuG1 (1.24 g, 2.35 mmol) was dissolved in the solvent of CHCl₃. Trifluoroacetic acid (3.48 mL, 46.96 mmol) was gradually dropped into the solution. After the mixed solution was stirred at room temperature for 2 h (prolonged time for the preparation of DG2), the excess trifluoroacetic acid and the solvent were removed by evaporation under vacuum. The crude product was precipitated in diethyl ether to afford DG1. DG0 and DG2 were prepared according to the same procedures as DG1.

DG1: Yield: white solid, 99%. ¹H NMR (400 MHz, D₂O): $\delta = 3.47$ (s, 4H, NH₃⁺CH₂CH₂N<), 3.41 (t, 4H, >NCH₂), 3.32 – 3.23 (m, 8H, CONHCH₂CH₂NHCO), 2.72 (t, 4H, >NCH2CH₂CONH), 2.27 – 2.07 (m, 4H, NHCOCH₂CH₂CH₃), 1.65 – 1.44 (m, 4H, NHCOCH₂CH₂CH₃), 0.97 – 0.75 (m, 6H, NHCOCH₂CH₂CH₃).

DG0: Yield: white solid, 99%. ¹H NMR (400 MHz, D₂O): $\delta = 3.51$ (t, 2H, NH₃⁺CH₂CH₂NH), 3.13 (dd, 2H, NH₃⁺CH₂CH₂NH), 2.38 – 2.16 (m, 2H, NHCOCH₂CH₂), 1.76 – 1.47 (m, 2H, NHCOCH₂CH₂), 1.07 – 0.74 (m, 3H, CH₂CH₂CH₃).

DG2: Yield: white solid, 99%. ¹H NMR (400 MHz, D₂O): $\delta = 3.56$ (t, 4H, $>NCH_2CH_2CONH$), 3.41 (t, 8H, $>NCH_2CH_2CONH$), 3.29 (dd, 4H, CONHC $H_2CH_2N<$), 3.28 – 3.15 (m, 18H, CONHC H_2CH_2NHCO , CF₃COO'NH₃⁺C H_2CH_2), 3.01 (s, 6H, C $H_2N(CH_2)CH_2$), 2.67 (t, 8H, $>NCH_2CH_2CONH$), 2.53 (t, 4H, $>NCH_2CH_2CONH$), 2.11 (t, 8H, NHCOC $H_2CH_2CH_3$), 1.57 – 1.41 (m, 8H, NHCOCH₂C H_2CH_3), 0.79 (t, 12H, NHCOCH₂C H_2CH_3).

Synthesis and characterization of EGn

The above prepared DG1 (1.27 g, 2.34 mmol) was dissolved in CHCl₃ solution containing triethylamine (0.71 g, 7.02 mmol). The CHCl₃ solution of succinic anhydride (0.35 g, 3.51 mmol) was dropwise added into DG1 solution. The reaction solution was stirred at room temperature for 48 h (24 h for the synthesis of EG0) and then evaporated under vacuum to remove redundant triethylamine and solvent. The crude product was washed by CHCl₃ and sequentially purified by a silica column to obtain the targeted molecule EG1. The compounds EG0 and EG2 were prepared based on the similar synthetic procedures as EG1.

EG1: Yield: white solid, 58.2%. ¹H NMR (400 MHz, DMSO-d₆): $\delta = 8.01$ (s, 2H, CON*H*), 7.90 (s, 2H, CON*H*), 7.78 (t, 1H, HOOCCH₂CH₂CON*H*), 3.15 – 3.02 (m, 10H, CONHCH₂CH₂NHCO, CONHCH₂CH₂N<), 2.64 (t, 4H, >NCH₂CH₂), 2.42 (t, 2H, CONHCH₂CH₂N<), 2.39 – 2.33 (m, 2H, HOOCCH₂CH₂), 2.29 (t, 2H, HOOCCH₂CH₂), 2.18 (t, 4H, >NCH₂CH₂CONH), 2.03 (t, 4H, NHCOCH₂CH₂CH₃), 1.59 – 1.38 (m, 4H, NHCOCH₂CH₂CH₃), 0.84 (t, 6H, NHCOCH₂CH₂CH₃). ¹³C NMR (100 MHz, DMSO-d₆): $\delta = 172.16$, 171.55, 52.20, 49.65, 38.32 (d), 37.34, 36.96, 33.41, 30.71, 18.57, 13.58. ESI MS: Calcd for C₂₄H₄₄N₆O₇: 528.33; Found: 529.3 (M+H)⁺, 551.3 (M+Na)⁺.

EG0: Yield: white solid, 55.6%. ¹H NMR (400 MHz, DMSO-d₆): δ = 7.86 (s, 1H, CON*H*), 7.76 (s, 1H, CON*H*), 3.08 (dd, 4H, CONHC*H*₂C*H*₂NHCO), 2.42 (t, 2H, HOOCC*H*₂CH₂), 2.29 (t, 2H, CH₂C*H*₂CONH), 2.02 (t, 2H, NHCOC*H*₂CH₂CH₃), 1.58 – 1.42 (m, 2H, NHCOCH₂C*H*₂CH₃), 0.84 (t, 3H, NHCOCH₂C*H*₂C*H*₃). ¹³C NMR (100 MHz, DMSO-d₆): δ = 173.80, 172.10, 171.09, 38.42, 38.22, 37.34, 30.03, 29.11, 18.55, 13.58. ESI MS: Calcd for C₁₀H₁₈N₂O₄: 230.13; Found: 231.1 (M+H)⁺, 253.2 (M+Na)⁺, 269.1 (M+k)⁺.

EG2: Yield: white solid, 47.7%. ¹H NMR (400 MHz, DMSO-d₆): $\delta = 8.18$ (s, 4H, CON*H*), 8.03 (s, 4H, CON*H*), 7.92 (s, 2H, CON*H*), 7.76 (t, 1H, HOOCCH₂CH₂CON*H*), 3.08 (s, 22H, CONHCH₂CH₂NHCO, CONHCH₂CH₂N<), 2.64 (t, 12H, >NCH₂CH₂CONH), 2.43 (t, 6H, CONHCH₂CH₂N<), 2.27 (s, 4H, HOOCCH₂CH₂CONH), 2.20 (dd, 12H, >NCH₂CH₂CONH), 2.03 (t, 8H, CONHCH₂CH₂CH₃), 1.49 (dd, 8H, CONHCH₂CH₂CH₃), 0.83 (t, 12H, CONHCH₂CH₂CH₃). ¹³C NMR (100 MHz, DMSO-d₆): $\delta = 172.13$, 171.52, 171.36, 52.70, 49.71, 38.40, 38.28, 37.33, 36.88, 33.48, 33.33, 18.59, 13.59. ESI MS: Calcd for C₅₂H₉₆N₁₄O₁₃: 1124.73; Found: 1125.7 (M+H)⁺, 1147.7 (M+Na)⁺.

Figures

Figure S1. The *J-V* plots of the devices using dendritic molecule EG0 (a), EG1 (b) or EG2 (c) as the co-adsorbent at different concentrations (0.15, 0.6, 2.4 or 9.6 mM for EG0, and 0.0375, 0.15, 0.6, or 2.4 mM for both EG1 and EG2) under AM 1.5 simulated sunlight illumination.

Figure S2. The *J-V* plots of N3-sensitized solar cells with and without co-adsorbent EG2 at the concentration of 0.15 mM under AM 1.5 simulated sunlight illumination.

Figure S3. The optimized structures of EG0, EG1 and EG2 in CPK type.