Supporting information

High-Rate Lithium-Sulfur Battery Assisted with Ultrafine La₂O₃

Nanoparticles Decorated and Nitrogen-Enriched Mesoporous Carbons

Fugen Sun^a, Jitong Wang^a, Donghui Long^a*, Wenming Qiao^a, Licheng Ling^a, Chunxiang^b Lv and Rong Cai^b*

^aState Key Laboratory of Chemical Engineering, East China University of Science and Technology,

Shanghai 200237

^bNational Engineering Laboratory for Carbon Fiber Preparation Technology, Institute of Coal Chemistry, Chinese Academy of Sciences,

Taiyuan 030001

*To whom correspondence should be addressed. E-mail: longdh@mail.ecust.edu.cn; cair@sxicc.ac.cn

Content:

Table S1. Chemical nature of the NMCs and MCs.

- Table S2. Pore structure parameters of the MC/La₂O₃ composites and NMC/La₂O₃ composites.
- Figure S1. XPS survey spectra of NMCs and MCs and high-resolution XPS N_{1s} spectra of NMCs.
- Figure S2. TEM image of 10La-MC composites.
- Figure S3. Coulombic efficiency of NMC/La₂O₃/S composites at 0.2 C, 1 C, 3 C and 5 C.
- Figure S4. EIS before 1st cycle of NMC/La₂O₃/S composites.
- Figure S5. Thermogravimetric analysis (TGA) curves of MC/La₂O₃/S composites.
- Figure S6. Typical cyclic voltammogram of nitrogen-free MC/La₂O₃/S composites at 0.2 mV s⁻¹ and 2 mV s⁻¹.
- **Figure S7.** Initial charge-discharge curves of nitrogen-free MC/La₂O₃/S composites at 0.2 C, 1 C, 3 C and 5 C.
- Figure S8. Cycle stability of nitrogen-free MC/La₂O₃/S composites at 0.2 C, 1 C, 3 C and 5 C.

Figure S9. EIS before 1st cycle of nitrogen-free MC/La₂O₃/S composites.

	Element analysis			XPS				c [d]	
Samples	Ν	N/C	Ν	N/C	pyridinic N ^[a]	pyrrolic N ^[b]	graphitic N ^[c]	S_{BET}	V_{T}^{lej}
	wt.%	at./at.	at.%	at./at.	%	%	%	$m^2 g^{-1}$	$\mathrm{cm}^3 \mathrm{g}^{-1}$
MCs	-	-	-	-	-	-	-	847	2.6
NMCs	8.1	0.08	20.4	0.31	56.2	31.7	12.1	731	2.6

Table S1. Chemical nature of the NMCs and MCs

[a] the relative concentration of pyridinic N (398.5 \pm 0.3 eV); [b] the relative concentration of pyrrolic N (400.5 \pm 0.3 eV); [c] the relative concentration of graphitic N (401.6 \pm 0.3 eV); [d] BET specific surface area; [e] total pore volume (P/P₀= 0.985).

In our synthesis approach, the incorporation of high-nitrogen-content melamine into phenolic precursors can transfer nitrogen atoms into carbon framework under pyrolysis conditions. The N/C mole ratio of NMCs is 0.31 determined from high-resolution XPS, three times higher than the value obtained from elemental analysis. The variation of the values can be explained by the surface specificity of XPS measurements, suggesting the N atoms are apt to gather in the surface rather than the bulk of carbon framework.

Sample	${S_{\scriptscriptstyle BET}}^{[a]} {m^2 g^{-1}}$	$V_{T}^{[b]}$ cm ³ g ⁻¹
5La-MC	755	2.2
10La-MC	754	2.0
15La-MC	752	1.9
5La-NMC	674	2.4
10La-NMC	670	2.3
15La-NMC	668	2.1

Table S2. Pore structure parameters of the MC/La₂O₃ composites and NMC/La₂O₃ composites

[a] BET specific surface area; [b] total pore volume (P/P0= 0.985).

After incorporating La_2O_3 onto the carbon framework, the porosity and the specific surface area show the expected decrease due to the introduction of heavier La_2O_3 nanoparticles. Similar pore volume and S_{BET} have achieved at the same La_2O_3 loading, which help us avoid the complication of the different pore structures while focus on the nitrogen doping determined electrochemical performance afterwards.

Figure S1. (a) XPS survey spectra of NMCs and MCs; (b) high-resolution XPS N_{1s} spectra of NMCs. A strong N_{1s} peak is observed for NMCs, while no obvious peak corresponding to nitrogen is found for MCs. The N_{1s} spectra were curve-fitted into three peaks with binding energies of 398.5, 400.5 and 401.6 eV corresponding to pyridinic N, pyrrolic N, and graphitic N, respectively.

Figure S2. TEM image of 10La-MC composites. Some obvious La_2O_3 aggregates could be observed in the nitrogen-free 10La-MC composites due to the Ostwald ripening and/or migration-coalescence of La_2O_3 particles easily occur during the nucleation and thermal-decomposition process.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2013

Figure **S3.** Coulombic efficiency of NMC/La₂O₃/S composites at 0.2 C (a), 1 C (b), 3 C (c) and 5 C (d). With 10 wt.% La₂O₃ decoration, the ternary 10La-MC/S composites exhibits coulombic efficiency of 94.9 %, 96.2 %, 97.1 % and 97.2 %, respectively at 0.2 C, 1 C, 3 C and 5 C after 100 cycles.

Figure S4. EIS before 1st cycle of NMC/La₂O₃/S composites. The semicircle diameters in the high frequency region of Nyquist plots indicate that the charge-transfer resistances are highest in 15La-NMC/S composites. The lowest electronic conductivity should be due to the excessive insulated La_2O_3 decoration.

Figure **S5.** Thermogravimetric analysis (TGA) curves of MC/La₂O₃/S composites. The sulfur contents of the MC/La₂O₃/S composites are also carefully controlled at the same of 60 wt. % as that of the NMC/La₂O₃/S composites. This could thus minimize the influence of the sulfur content, which could prompt us to focus on the effect of the La₂O₃ decorating and the nitrogen doping on the electrochemical performances of the resulting composites.

Figure S6. Typical cyclic voltammogram of nitrogen-free MC/La₂O₃/S composites at 0.2 mV s⁻¹ (a) and 2 mV s⁻¹ (b). Similar with the nitrogen doped NMC/La₂O₃/S composites, the sulfur reduction onset potentials gradually increase with the increase of La₂O₃ loading, especially at a high scanning rate of 2 mV s⁻¹. The higher reduction potential indicates improved kinetics by the La₂O₃ decoration.

Figure **S7.** Initial charge-discharge curves of nitrogen-free MC/La₂O₃/S composites at 0.2 C (a), 1 C (b), 3 C (c) and 5 C (d). At a low rate of 0.2 C, the initial discharge capacity could be increased from 1041 mAh g⁻¹ (based on the mass of sulfur) for MC/S to 1149 mAh g⁻¹ by La₂O₃ decoration. At a high rate of 5C (8.4 A g⁻¹), the high initial discharge capacity of 514 mAh g⁻¹ could be achieved for 10La-MC/S, much improved compared to the capacity of 334 mAh g⁻¹ for MC/S.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2013

Figure S8. Cycle stability of nitrogen-free MC/La₂O₃/S composites at 0.2 C (a), 1 C (b), 3 C (c) and 5 C (d). With 10 wt.% La₂O₃ decoration, the ternary 10La-MC/S composites deliver reversible capacities of 676, 541, 416 and 367 mAh g⁻¹ respectively at 0.2 C, 1 C, 3 C and 5 C after 100 cycles.

Figure S9. EIS before 1st cycle of nitrogen-free MC/La₂O₃/S composites. Similar with the nitrogen doped 15La-NMC/S composite, the 15La-MC/S composite also exhibits the highest charge-transfer resistances.