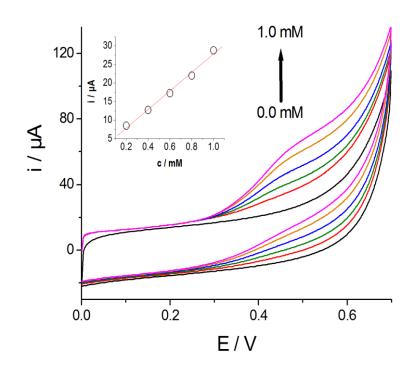
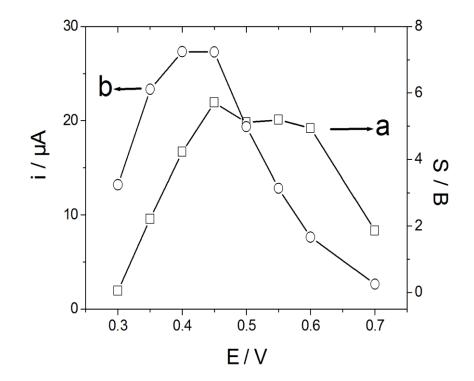
Supporting Information

Ultrafine CuO nanoparticles isolated by ordered mesoporous carbon for catalysis and electroanalysis

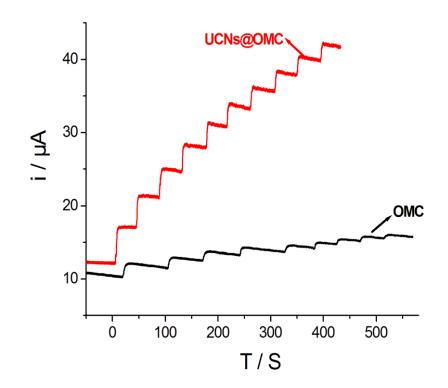
Hongmin Wu, Shenghai Zhou, Ying Wu, Wenbo Song*


College of Chemistry, Jilin University, Changchun 130012, China

* Corresponding author. Tel: +86-431-85168352; Fax: +86-431-85168420


E-mail address: wbsong@jlu.edu.cn (W. Song)

*To whom correspondence should be addressed.


Prof. Wenbo Song College of Chemistry, Jilin University, Changchun 130012, P.R. China Email: wbsong@ jlu.edu.cn

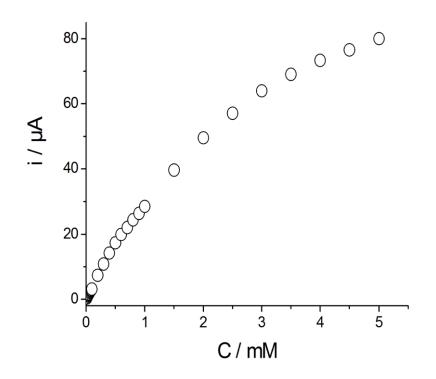

Fig. S1. CVs of UCNs@OMC/GCE recorded in 0.1M NaOH containing 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0 mM glucose, respectively. Inset: plot of oxidative peak current with concentration.

Fig. S2. Plots of oxidation current (a) and signal-to-background ratio (b) to the applied potential at UCNs@OMC/GCE measured by chronoamperometry.

Fig. S3. Compared current responses at +0.45V by successive addition of 0.1 mM glucose into 0.1M NaOH at UCNs@OMC/GCE and OMC/GCE.

Fig. S4. Calibration curve for amperometric response of glucose at UCNs@OMC/GCE.

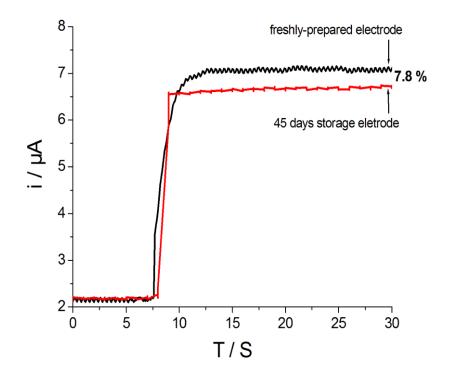
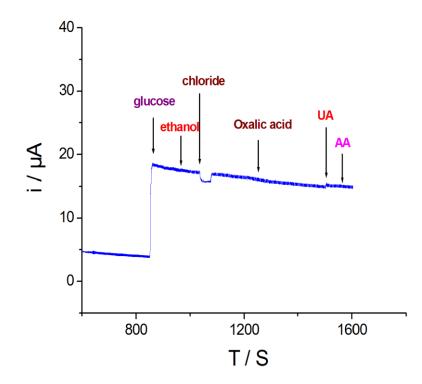



Fig.S5. Compared current responses of 0.1 mM glucose in 0.1M NaOH at +0.45V at the freshly-prepared UCNs@OMC/GCE and the one after 45 days storage.

Fig. S6. Amperometric responses to successive addition of 0.3 mM glucose, 1.0 mM ethanol, 1.0 mM sodium chloride, 1.0 mM oxalic acid, 0.01 mM UA and 0.01 mM AA in 0.1 M NaOH at UCNs@OMC/GCE.

Table S1 Reproducibility of glucose oxidation (0.6 mM) in 0.1M NaOH at +0.45Vmeasured at five identically fabricated UCNs@OMC/GCE.

electrode	1	2	3	4	5	RSD
Current(µA)	19.5	20.2	20.7	19.9	20.4	4.6%