Space-confined Synthesis of Nanorods Oriented-assembled Hierarchical MFI Zeolite Microspheres

Haixiang Tao, Hong Yang, Yanhui Zhang, Jiawen Ren, Xiaohui Liu, Yanqin Wang* and Guanzhong Lu*

Shanghai Key Laboratory of Functional Materials Chemistry, Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai 200237, PR China

* Corresponding authors. Tel.: +86 21 64253824; fax: +86 21 64252923.

E-mail addresses: wangyanqin@ecust.edu.cn (Y.Q. Wang); gzhlu@ecust.edu.cn (G. Z. Lu)

Scetion I: Synthesis of Materials

(1) Synthesis of carbon/silica monolith ($SiO_2/C = 4:6$)

reaction mixture having In this case, the the batch molar composition 0.64glucose-0.92resorcinol-20H₂O-0.25TsOH-TEOS was prepared by mixing glucose, resorcinol, and TsOH in deionized water to form a transparent solution in a Teflon-line container, followed by addition of TEOS under stirring at 80 °C. Afterwards, this container was sealed into an autoclave and put into an oven of 180 °C for 24 h for hydrothermal treatment. The resultant monolith was washed with hot distilled water (>80 °C) until no sulfate ions were detected in the filtration water, and then dried at 90 °C overnight. After that, the composite monolith was further carbonized at 500 °C in N₂ atmosphere at a heating rate of 2 °C min⁻¹.

(2) Catalytic reactions

All ZSM-5 samples were transferred to H^+ type ZSM-5 by ion exchange with NH₄NO₃ (1 mol L^{-1}) at 80 °C for 3 h, which repeated three times, finally all the catalysts were calcined at 550 °C for 3 h.

Condensation of benzaldehyde with n-butyl alcohol

The catalytic reactions were carried out under N_2 in a three-necked flask equipped with a refluxing condenser. In a typical run, 1.325 g of benzaldehyde, 3.7 g of n-butyl alcohol and 0.05 g of Hier-ZSM-5 were mixed with continuous stirring, then the reaction temperature was raised to and kept at 80 °C for 4 h. The reaction mixtures were separated by centrifugation and analyzed by a Perkin-Elmer Clarus 500 gas chromatography with a SE-54 column. The product was further confirmed by GC-MS.

Alkylation of toluene with benzyl chloride

The catalytic reactions were carried out under N_2 in a three-necked flask equipped with a reflux condenser. In a typical run, 1.38 g of toluene, 1.9 g of benzyl chloride and 0.05 g of Hier-ZSM-5 were mixed with stirring, then the reaction temperature was raised and kept at 80 °C for 3 h. The reaction mixtures were separated by centrifugation and analyzed by a Perkin-Elmer Clarus 500 gas chromatography with a SE-54 column. The products were further confirmed by GC-MS.

Acetalization of cyclohexanone

The acetalization of cyclohexanone was carried out batch-wise in around-bottomed flask equipped with a condenser and a magnetic stirrer. In a typical reaction, 0.05 g of Hier-ZSM-5 was dispersed in a solution containing 10 mL of methanol and 0.098 g of cyclohexanone. The solution was stirred at 50 °C for 4 h and then the reaction mixtures were separated by centrifugation and analyzed by a Perkin-Elmer Clarus500 gas chromatography with a SE-54 column. The product was

further confirmed by GC-MS.

Hydroxylation of Phenol with H₂O₂

Phenol hydroxylation experiments were carried out batch-wise in a round-bottomed flask equipped with a condenser and a magnetic stirrer. In a typical run, 1.28 g of phenol, 0.05 g of Hier-TS-1, and 10 mL of water were mixed, followed by an addition of H_2O_2 (30%, 0.51 g). After the reaction for 4 h at 80 °C with magnetic stirring, the products were taken out from the system and analyzed by an HPLC apparatus (Agilent 1200 Series) equipped with an XDB-C18 column (Eclipse USA).

Section II: Supplemental Figures and Tables

Figure S1 Photograph (a) and TG-DTA curves (b) of carbon/silica monolith $(SiO_2/C = 6:4)$.

Figure S2 TEM images of carbon after etching silica with HF acid.

Figure S3 Mercury intrusion porosimetry investigations of carbon after etching silica with HF acid.

Figure S4 N₂ sorption isotherms and pore size distributions (inset) of (a) carbon/silica monolith (SiO₂/C = 6:4) and (b) carbon after etching silica with HF acid.

Figure S5 SEM images of (a) Hier-Silicalite-1 and (b) Hier-Silicalite-1 after 1 h of ultrasonic treatment.

Figure S6 XRD patterns (a), N_2 sorption isotherms (b) and SEM images (c and d) of Silicalite-1 synthesized from carbon/silica monolith (SiO₂/C = 6:4) without N_2 treatment (designated as Hier-Silicalite-1 (WONT)).

Figure S7 XRD patterns (A), N₂ sorption isotherms (B) and SEM images (C) of Silicalite-1 synthesized from carbon/silica composite monolith (SiO₂/C = 4:6) without N₂ treatment (a, designated as meso-Silicalite-1 (4:6-WONT)) and with N₂ treatment (b, designated as Hier-Silicalite-1 (4:6)).

Figure S8 XRD patterns (A), N₂ sorption isotherms (B) and SEM images (C) of Silicalite-1 from carbon/silica composite (SiO₂/C = 7:3, not monolith) with N₂ treatment (designated as Hier-Silicalite-1 (7:3)).

Figure S9 FT-IR spectra of the samples at various reaction times.

Figure S10 (a) ²⁷Al solid state NMR spectra of Hier-ZSM-5 and (b) UV-vis spectra of Hier-TS-1.

Figure S11 NH₃-TPD curves of Con-ZSM-5 and Hier-ZSM-5.

Figure S12 SEM images of Hier-ZSM-5 after 1 h of ultrasonic treatment (a) and after condensation reaction (b).

Figure S13 SEM images of Hier-TS-1 after 1 h of ultrasonic treatment (a) and after phenol hydroxylation reaction (b).

Table S1 Textural parameters of carbon after etching silica by HF acid.						
Samples	S _{BET} (m ² g ⁻¹)	$\frac{S_{micro}}{(m^2 g^{-1})^a}$	V _{mirco} (cm ³ g ⁻¹) ^a	V _{total} (cm ³ g ⁻¹)	V _{total} (cm ³ g ⁻¹) ^b	
carbon/silica monolith	354	278	0.15	0.17	-	
carbon	418	148	0.06	0.66	1.84	
a: determined by the t-plot method, b: obtained by mercury porosimetry.						

Samples	Crystallization time (h)	S_{BET} (m ² g ⁻¹)	$\mathrm{S}_{\mathrm{micro}}$ $(\mathrm{m}^2~\mathrm{g}^{-1})^{\mathrm{a}}$	$\frac{V_{mirco}}{(cm^3 g^{-1})^a}$	V _{meso} (cm ³ g ⁻¹)	V _{total} (cm ³ g ⁻¹)
Hier-Silicalite-1 (WONT)	96	383	268	0.12	0.11	0.23
Hier-Silicalite-1 (4:6)	96	394	277	0.12	0.30	0.42
Hier-Silicalite-1 (4:6-WONT)	96	388	249	0.11	0.15	0.26
Hier-Silicalite-1 (7:3)	96	401	265	0.12	0.22	0.34
a: determined by the t-plot meth	od					

Table S2 Textural parameters of samples synthesized under different conditions

$\overset{Cl}{\longrightarrow} + \overset{l}{\longrightarrow} \overset{l}{\longrightarrow} \overset{CH_2Ph}{\longrightarrow} \overset{l}{\longrightarrow} \overset{CH_2Ph}{\longrightarrow} \overset{l}{\longrightarrow} \overset{CH_2Ph}{\longrightarrow} (1)$					
	$ \begin{array}{c} & & \\ & & $	$\overset{HO}{\longrightarrow}$			
Table S3 Catalytic performance of Hier-ZSM-5 and Con-ZSM-5					
	5 1				
Reaction		Hier-ZSM-5	Con-ZSM-5		
Reaction 1	Toluene conversion (%)	Hier-ZSM-5 73.5 (90:10) ^a	Con-ZSM-5 30.0 (99:1)		
Reaction 1 2	Toluene conversion (%) Benzaldehyde conversion (%)	Hier-ZSM-5 73.5 (90:10) ^a 54.1	Con-ZSM-5 30.0 (99:1) 19.5		

(a) The first data value represents the reactant conversion (%). The numbers in parentheses indicates the percentage selectivity of mono-alkylated/di-alkylated product.

Catalyst	Phenol conversion(%)	Product selectivity(%)			
Catalyst		Α	В	С	
Hier-TS-1	29.8	36.5	40.1	23.4	
TS-1	15.7	34.3	38.6	27.1	

Table S4 Catalytic performance of Hier-TS-1 and TS-1 in phenol hydroxylation

Product: A.catechol; B. hydroquinone; C. byproducts including Benzoquinone, tar and some unidentified products.