Supplementary information

Figure S1: Difference Fourier map between synchrotron X-ray diffraction observation and calculation, considering the host structure [FeBO₃] only (Left y=0.5), [LiBO₃] only (Right y=0.3281). The positive electronic density residue was marked as red while the negative was painted in light blue.

Figure S2: Difference Fourier map between neutron powder diffraction observation (neutron diffraction) and calculation of considering the host structure $[FeBO_3]$ only (Left y=0.5), [LiBO_3] only (Right y=0.3281). The positive nuclear residue was marked as red while the negative was painted in light blue.

Figure S3: Illustration of the zigzag shaped Li^{\dagger} diffusion path along the *c*-axis (adapted from the cif file of our single crystal XRD refinement). Light blue plane (010) and grey dash line (lithium ions diffusion path) are guided for eyes.

Figure S4: Comparison of XRD patterns: non-carbon coated LiFeBO₃ (sample **A**) versus carbon-coated LiFeBO₃/C (Sample **C**, ascorbic acid decomposition), recorded with a Bruker D8 diffractometer using CoK_{α} radiation. The cell parameters deduced from full-pattern matching refinements are listed on right side of the figure.

Figure S5: Full-pattern matching refinement conducted on XRD diffraction pattern recorded from LiFeBO₃/C sample prepared by self-combustion; (left inset) comparison of partial XRD patterns of self-combustion prepared LiFBO₃/C (green) and non-carbon coated LiFeBO₃ (red); (right inset) TEM image of sample B (self-combustion), suggested that LiFeBO₃ grains are surrounded by carbon.

Figure S6: (a) Charge and discharge curves for sample (C) cycled at C/20 rate, 55° C within 1.5-4.5 V voltage range, using LP30 liquid electrolyte. (b) Capacity retention for the same cell, which could still deliver a capacity of 350 mAh/g at the 70th cycle.

Figure S7: *in-situ* XRD patterns recorded during battery operation (1st charge to 4.5 V and 1st discharge down to 1.5 V vs. Li^+/Li) with a Bruker D8 diffractometer using the CuK_a radiation. The cell was cycled at C/50 rate, meanwhile XRD patterns were collected every 2 hours for a 10°-40° 20 range. The red and blue dash lines are guided for eyes.

Figure S8: Selected 20 regions of XRD patterns showing the respective shifts of the reflection peaks; the pristine LiFeBO₃ (upper red curve), "Li_{0.25}FeBO₃" (green curves) and LiFeBO₃ after one full electrochemical cycle (lower red curve).

Table S1. Crystallo	graphic data of LiFeBO	3 derived from Syn	chrotron X-Ray of	diffraction Rietveld	refinements,
globa	l agreement factors and	d selected interator	nic distances(Å)	and angles(deg.)	

Formula	Atom	S.O.F.	X	У	Z	B _{iso} (Ų)
LiFeBO₃	Li(1)	0.39(3)	0.698(4)	0.525(2)	0.164(2)	0.63(4)
C2/c	Li(2)	0.60(3)	0.632(3)	0.487(2)	0.1078(15)	1.73(7)
a = 5.1701(1)Å	Fe	1.0	0.1612(2)	0.3361(1)	0.1243(1)	anisotrop
b = 8.99219(2)Å	В	1.0	0.152(1)	0.6733(8)	0.1233(5)	0.71(3)
c = 10.1656(2)Å	01	1.0	0.4058(5)	0.1625(4)	0.0922(3)	0.78(9)
$\mathbf{B} = 91.443(1)^{\circ}$	02	1.0	0.7777(5)	0 3030(3)	0 1568(3)	0.55(5)
$\mathbf{V} = 468.76(1)$ Å ³	02	1.0	0.3120(6)	0.5000(0)	0.1000(0)	0.00(0)
v = 400.70 (1) A ³	03	1.0 D	0.3129(0)	0.0420(3)	0.1204(3)	0.70(9)
	1Eo 2lin	RBragg=	6.70% Rf=4.9δ	3% Rp=10.4%	$R_{wp} = 13.3 \chi^2 = 1$	1.24
Atom	U11	U22	U33	U12	U13	U23
Fe	97(4)	60 (3)	156(4)	18(5)	11(3)	6(5)
BO3	01	02	03			
04	01	02	O3	4)		
01	1.310(b)	125.0(4)	120.4(4	4) 5)		
02	2.374(3) 2.377(Δ)	2 349(3)	1 4.5(; 1 428()	5) 7)		
	2.011(4)	2.040(0)	1.420(·)		
Li(1)O4						
	01	02	03	'Ax	ial' O3	
01	1.797(19)	121.9(9)	117.7(9) 112	2.6(9)	
02	3.343(4)	2.024(18)	105.6(8	B) 96	.8(7)	
03 (Asia// 02	3.272(4)	3.226(3)	2.024(2	20) 97 4) 2.44	.5(8)	
	3.281(4)	3.115(4)	3.132(4	4) Z .1.	38(20)	
Li(2)O4						
	01	02	03	'Ax	ial' O3	
01	2.119(17)	113.7(8)	115.7(8	8) 84.	96(5)	
02	3.343(4)	1.868(17)	126.8(9) 96	.2(6)	
O 3	3.272(4)	3.226(3)	1.738(1	6) 105	5.9(7)	
	2072(4)	3214(4)	3.343(4	4) 2.4 ′	19(15)	
'Axial' O3	3.073(4)	5.2 (4)				
'Axial' O3 FeO₅	3.073(4)	0.211(1)				
'Axial' O3 FeO₅	01	02	03	Axi	ial O1	Axial O2
'Axial' 03 FeO₅ 	01 2.031(3)	02 121.8(1)	O3 117.2(1	Ax 1) 85	ial O1 .8(1)	Axial O2 89.2(1)
'Axial' O3 FeO₅ 01 02	01 2.031(3) 3.557(3)	O2 121.8(1) 2.039(2)	03 117.2(120.8(Ax 1) 85 1) 91	ial O1 .8(1) .8(1)	Axial O2 89.2(1) 86.2(1)
'Axial' 03 FeO₅ 01 02 03	01 2.031(3) 3.557(3) 3.445(4)	O2 121.8(1) 2.039(2) 3.517(4)	03 117.2(120.8(2.003 (A xi 1) 85 1) 91 2) 93	ial O1 .8(1) .8(1) .2(1)	Axial O2 89.2(1) 86.2(1) 93.7(1)
'Axial' 03 FeO₅ 01 02 03 Axial 01	O1 2.031(3) 3.557(3) 3.445(4) 2.897(4)	O2 121.8(1) 2.039(2) 3.064(4)	03 117.2(' 120.8(' 2.003 (<i>i</i> 3.073('	Ax i 1) 85 1) 91 2) 93 4) 2.2	ial O1 .8(1) .8(1) .2(1) 20(3)	Axial O2 89.2(1) 86.2(1) 93.7(1) 172.7(1)

ulation (%)	Site _{population} (w+ (mm/s)	A (counts ·mm/s)	QS (mm/s)	CS (mm/s)	
2(7)	3.2(7)	0.097(81)	3100	1.900(63)	0.919(32)	Fe ²⁺ 1
.7(2)	37.7(2)	0.1369(54)	35700	1.4006(91)	1.0648(43)	Fe ²⁺ 2
.0(2)	29.0(2)	0.148(17)	28000	1.977(12)	1.120(28)	Fe ²⁺ 3
.0(2)	19.0(2)	0.136(63)	18000	1.996(27)	1.012(33)	Fe ²⁺ 4
5(64)	8.35(64)	0.166(40)	7890	0.472(85)	0.188(49)	Fe ³⁺
1(87)	2.01(87)	1	1900	/	1	Fe
	2.0	1	1900	Ι	1	Fe

Table S2a Mössbauer parameters of LiFeBO3 at 293K

CS—chemical shifts, QS—quadrupole splitting, w+—line width

Table S2b Mössbauer parameters of LiFeBO3 at 70K

	CS (mm/s)	QS (mm/s)	A (counts ⋅ mm/s)	w+ (mm/s)	Sitepopulation (%)
Fe ²⁺ 1	1.377(12)	2.050(19)	8200	0.098(15)	3.76(68)
Fe ²⁺ 2	1.1735(35)	1.870(21)	60000	0.173(15)	27.8(5)
Fe ²⁺ 3	1.1838(12)	2.7007(43)	95600	0.1462(24)	44.0(2)
Fe ²⁺ 4	1.1856(27)	1.467(17)	34500	0.126(13)	15.9(4)
Fe ³⁺	0.2731(67)	0.637(14)	14910	0.1181(93)	6.86(30)
Fe	1	1	3700	1	1.72(54)

Formula	Atom	S.O.F.	x	У	Z	Biso(Ų)	
LiFeBO₃	Li(1)	0.53(5)	0.664(1)	0.508(1)	0.157(2)	1.07	
C 2/c	Li(2)	0.47(5)	0.661(1)	0.495(1)	0.093(3)	1.18	
a = 5.1711(5)Å	Fe	1.0	0.16114(5)	0.33586(3)	0.12456(3)	0.81	
b = 8.9103(8)Å	В	1.0	0.1657(3)	0.6687(2)	0.1253(2)	0.56	
c = 10.1577(10)Å	01	1.0	0.4045(2)	0.1616(2)	0.0921(3)	0.70	
β = 91.475(4)°	02	1.0	0.7808(2)	0.3041(2)	0.1576(1)	0.66	
V = 467.87(8) Å ³	O3	1.0	0.3120(3)	0.5404(2)	0.1261(2)	1.51	
R[F ² >2♂(<i>F</i> ²)]=0.023 wR(F ²)=0.072							
1Fe 2Li model anisotropic thermal parameters (Å ²)x10-4							
Atom	U11	U22	U33	U12	U13	U23	
Fe	89(2)	99(2)	122(1)	-6(1)	2(1)	7(1)	
O3	80(5)	50(5)	441(5)	-27(4)	-47(4)	8(4)	

Table. S3 Crystallographic data of LiFeBO3 from room temperature single crystal X-ray diffraction and Selected interatomic distances (Å) and angles (deg.).

 $\label{eq:constraint} \begin{array}{l} The form of the anisotropic thermal parameters is: \\ exp[-2\pi^2(h^2a^{*2}U_{11}+k^2b^{*2}U_{22}+l^2c^{*2}U_{33}+2hka^*b^*U_{12}+2hla^*c^*U_{13}+2klb^*c^*U_{23}] \end{array}$

BO ₃					
	01	02	O3	-	
01	1.385(2)	120.6(2)	119.8(3)		
02	2.403(2)	1.381(3)	119.5(2)		
03	2.385(2)	2.377(2)	1.371(3)		
Li(1)O₄					
	01	02	O3	'Axial' O3	
01	1.969(10)	117.2(3)	117.5(5)	103.0(4)	
02	3.320(2)	1.921(9)	116.7(4)	96.2(4)	
O 3	3.275(2)	3.221(2)	1.861(8)	100.2(3)	
'Axial' O3	3.283(3)	3.090(3)	3.141(3)	2.22(3)	
Li(2)O4					
	01	02	O3	'Axial' O3	
01	1.944(10)	118.2(3)	117.6(6)	92.6(4)	
02	3.320(2)	1.925(14)	115.4(5)	100.5(5)	
O 3	3.275(2)	3.221(2)	1.886(10)	106.9(4)	
'Axial' O3	3.045(3)	3.222(3)	3.334(3)	2.26(4)	
FeO₅					
	01	02	O 3	Axial O1	Axial O2
01	2.031(1)	121.9(1)	117.3(1)	85.8(1)	89.8(1)
02	3.545(2)	2.023(1)	120.8(1)	92.4(1)	85.7(1)
O 3	3.428(2)	3.483(2)	1.982(2)	92.8(1)	93.8(1)
Axial O1	2.895(2)	3.064(2)	3.045(3)	2.218(1)	173.3(1)
Axial O2	3.020(2)	2.906(2)	3.090(3)	4.454(2)	2.243(1)

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A This journal is The Royal Society of Chemistry 2013