Supporting Information for

High ionic conductivity in melilite-type silicates

Cristina Tealdi, Gaetano Chiodelli, Sonia Pin, Lorenzo Malavasi, Giorgio Flor

 $\label{eq:sigma} \begin{tabular}{ll} \mbox{Figure SI-1}-Rietveld refinement of the neutron diffraction pattern for $$Sr_2MgSi_2O_7$ at room temperature (Institute Laue-Langevin, Grenoble, France). \end{tabular}$

Figure SI-2 – Evolution of lattice parameter for $Sr_2MgSi_2O_7$ as a function of temperature as determined by neutron diffraction. (Error bars are within the size of the marker)

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2014

Figure SI-3 – Evolution of the lattice volume for $Sr_2MgSi_2O_7$ as a function of temperature as determined by neutron diffraction. (Error bars are within the size of the marker)

Figure SI-4. Polarization curve of a Pt/ Sr_{1.7}Na_{0.3}MgSi₂O_{7-d} /Pt cell under solid oxide fuel cell operating conditions (hydrogen at the anode side and oxygen at the cathode side) measured under variable loads at 800°C.

Figure SI-5. Pictures showing water formation at the anode side during cell discharge under variable loads. Water vapor in the outlet hydrogen gas flow condensates in a glass tube outside the oven.