Supporting Information

A novel nitrogen rich porous aromatic framework for hydrogen and carbon dioxide storage

Derviş Emre Demirocak, ^{*1} Manoj K. Ram,¹ Sesha S. Srinivasan, ^{2,1} D. Yogi Goswami, ¹ and Elias K. Stefanakos¹

¹ Clean Energy Research Center, College of Engineering, University of South Florida, Tampa, FL, 33620, USA

² Department of Physics, College of Arts and Sciences, Tuskegee University, Tuskegee, AL, 36088, USA

*Corresponding Author: Derviş Emre Demirocak, E-mail: demirocak@mail.usf.edu, Tel: +1 813 4096864, Fax: +1 813 9742050

Fig. S1. TGA and DSC of the compounds 1 and 2. * Refer to Fig. 1 for chemical structure.

Fig. S2. FTIR of NPAF and compound **2** (building block of the NPAF). * Refer to Scheme 1 for chemical structure.

Fig. S4. Effect of triethanolamine (TEA) treatment on hydrogen and CO₂ uptakes of NPAF.

Fig. S5. TGA of NPAF under 100 ml/min nitrogen flow and 20 K/min ramping rate.

Fig. S6. XRD spectrum of NPAF.

Fig. S7. Plot of the term V_a (P_o - P) vs. P/P_o for BET consistency analysis.

Fig. S8. Nitrogen and CO_2 adsorption isotherms and fittings to experimental data. Nitrogen and CO_2 adsorption isotherms were fitted by using hybrid and slit pore geometry, respectively.

Fig. S9. Micropore and mesopore size distribution of NPAF. Left of the dash line represents the micropores (< 20 Å) and right of the dash line represents mesopores (20 - 500 Å).

Materials	S _{BET} (m²/g)	CO ₂ uptake at 1 atm ¹ (mmol/g)		H ₂ uptake at 77 K / 1 atm ¹	Ref.	
		273 K	298 K	(wt. %)		
	1790	3.64	2.32	1.87	This work	
NPAF		31.1 ²	28.7 ³	0.33 ⁴		
POP-diimide	960	4.02 ⁵	2 ⁶	_	1	
BILP-1	1172	4.27 ⁷	2 .98⁵	1.86 ⁸	2	
BLP-1(H)	1360	1.68	0.94 ⁵	1.33	3	
BLP-12(H)	2244	2.91	1.79 ⁵	1.93	3	
PPN-4	6461	_	38.5 ⁹	-	4	
PPN-6	4023	1.98 ¹⁰	1.5 ⁸	_	5	
PPN-6-SO3H	1254	4.98 ⁷	3.6 ⁸	_	5	
PPN-6-SO3Li	1186	5.08 ⁷	3.7 ¹¹	_	5	
Compound 6 ⁹	_	_	0.2 ¹²	-	6	
Compound 3 ⁹	1566	2.1 ¹³	-	1.1	7	
POF1B	917	4.2 ¹⁴	2.1 ¹⁵	1.25	8	
HCP 1	1646	_	1.7 ¹⁶	_	9	
JUC-Z2	2034	3.2	1.6	1.62	10 11	
	1135	5 3 ¹⁸	3 6 ¹⁸	2 25	12	
TEM-1	738	1 73	0.93 ¹⁸		13	
	730	1.75	2 5 ¹⁸		13	
BILP-10	787	4.0	12.4 ¹⁹	1.6		
4C	1266	_	2.28 ¹⁸	-	15	
Fe-POP-1	875	4.30	_	-	16	
PIM-1	899	2.53 ¹⁸	1.41 ¹⁸	_	17	
Amidoxime-PIM-1	577	2.74 ¹⁸	1.65 ¹⁸	_	17	
BLP-10(CI)	924	2.7	1.41	1.3	18	
BILP-3	1306	5.1 ¹⁸	3.3 ¹⁸	2.1	19	
COP-1	168	_	1.36 ¹⁸	_	20	
PAF-1	5300	2.06	_	1.6	21	
Ni-Por-1	1711	3.13 ²⁰	_	_	22	
PAF-18-OH	1121	2.57 ¹⁸	1.52 ¹⁸	1.35	23	
PAF-18-OH-Li	981	3.29 ¹⁸	2.02 ¹⁸	1.65	23	
PAF-1-CH2NH2	1363	4.38	-	_	24	
MOP A-B2	614	2.71	1.90 ²¹	_	25	
TPI-1	809	2.45	1.25	_	26	

Table S1. The CO₂ and hydrogen uptake values of porous polymers reported in the literature.

¹ Unless otherwise noted, CO₂ uptake was reported at 1 atm. High pressure data, where available, highlighted in red.

² At 34.7 bar ³ At 57.2 bar ⁴ At 298 K and 80 bar

 5 CO₂ uptake at 273 K / 1 atm was not reported explicitly. The value given in the table is calculated by interpolation from the figure.

 6 CO₂ uptake at 298 K / 1 atm was not reported explicitly. The value given in the table is calculated by interpolation from the figure.

⁷ Reported values were in mg/g unit. 188 mg/g and 131 mg/g at 273 K and 298 K, respectively.

⁸ Reported value was 19 mg/g at 77 K. Converted to wt.% by using the equation [mass hyd / (mass hyd + mass sample)].

⁹ At 295 K and 50 bar.

 10 CO₂ uptake at 273 K / 1 atm was not reported explicitly. The value given in the table is calculated by interpolation from the figure.

¹¹ At 295 K.

¹² At 293 K and 1 bar

¹³ At 1 bar

¹⁴ At 1 bar

¹⁵ At 1 bar. The value given in the table is calculated by interpolation from the figure.

¹⁶ At 1 bar

¹⁷ At 18 bar

¹⁸ The value given in the table is calculated by interpolation from the figure.

¹⁹ At 40 bar.

²⁰ At 1.08 bar

²¹ At 293K / 1 atm

Dual site Langmuir Freundlich (DSLF) equation is given in Eq. S1.²⁷

$$q = \frac{q_{sat,A}b_A p^{\alpha_A}}{1 + b_A p^{\alpha_A}} + \frac{q_{sat,B}b_B p^{\alpha_B}}{1 + b_B p^{\alpha_B}}$$
(S1)

where q is the amount of gas adsorbed (mmol/g), p is the pressure (bar), q_{sat} is the saturation capacity (mmol/g), b is the Langmuir-Freundlich parameter (bar^{- α}) and α is the dimensionless Langmuir-Freundlich exponent for two adsorption sites A and B.

DSLF fitting parameters were calculated by Igor Pro software using curve fitting toolbar.

Table S2. DSLF fitting parameters for hydrogen, carbon dioxide and nitrogen adsorption isotherms given in Figs. S10, S11 and S12, respectively.

DSLF	Hydrogen		Carbon	dioxide	Nitrogen	
parameters	77 K	87 K	273 K	298 K	273 K	298 K
q _{sat,A}	153.54	107.37	15.992	120.9	18.606	2.6122
$q_{sat,B}$	321.88	274.82	160.04	47.811	9.814	3.2054
b _A	4.7669	3.7793	1.7692	0.22016	0.21909	0.95116
b _B	0.41514	0.33141	0.80414	1.7901	1.8447	1.9993
$\alpha_{\rm A}$	0.90285	1.0114	4.6664	2.0961	2.9267	2.9875
$\alpha_{\rm B}$	1.3682	1.4997	1.074	1.1917	1.2737	1.2322

Fig. S10. Dual site Langmuir Freundlich (DSLF) fits to hydrogen uptake at 77 K and 87 K.

Fig. S11. Dual site Langmuir Freundlich (DSLF) fits to the CO_2 adsorption data at 273 K and 298 K.

Fig. S12. Dual site Langmuir Freundlich fits to the nitrogen adsorption data at 273 K and 298 K.

Fig. S13. Absolute and excess CO₂ gravimetric capacities of NPAF at 273 K and 298 K.

Fig. S14. Absolute and excess hydrogen gravimetric capacities of NPAF at 298 K.

References

- 1. O. K. Farha, Y.-S. Bae, B. G. Hauser, A. M. Spokoyny, R. Q. Snurr, C. A. Mirkin and J. T. Hupp, *Chem. Commun.*, 2010, **46**, 1056-1058.
- 2. M. G. Rabbani and H. M. El-Kaderi, Chem. Mater., 2011, 23, 1650-1653.
- 3. K. T. Jackson, M. G. Rabbani, T. E. Reich and H. M. El-Kaderi, *Polym. Chem.*, 2011, **2**, 2775-2777.
- 4. D. Yuan, W. Lu, D. Zhao and H. C. Zhou, *Adv. Mater.*, 2011, 23, 3723-3725.
- 5. W. Lu, D. Yuan, J. Sculley, D. Zhao, R. Krishna and H.-C. Zhou, *JACS*, 2011, **133**, 18126-18129.
- 6. Y. Jin, B. A. Voss, R. D. Noble and W. Zhang, *Angew. Chem.*, 2010, **122**, 6492-6495.
- 7. M. Mastalerz, M. W. Schneider, I. M. Oppel and O. Presly, *Angew. Chem. Int. Ed.*, 2011, **50**, 1046-1051.
- 8. A. P. Katsoulidis and M. G. Kanatzidis, *Chem. Mater.*, 2011, 23, 1818-1824.
- 9. C. F. Martín, E. Stöckel, R. Clowes, D. J. Adams, A. I. Cooper, J. J. Pis, F. Rubiera and C. Pevida, *J. Mater. Chem.*, 2011, **21**, 5475-5483.
- 10. C. Pei, T. Ben, Y. Cui and S. Qiu, Adsorption, 2012, 18, 375-380.
- 11. Z. Xiang, X. Zhou, C. Zhou, S. Zhong, X. He, C. Qin and D. Cao, *J. Mater. Chem.*, 2012, **22**, 22663-22669.
- 12. M. G. Rabbani and H. M. El-Kaderi, Chem. Mater., 2012, 24, 1511-1517.
- 13. X. Zhu, C. Tian, S. M. Mahurin, S.-H. Chai, C. Wang, S. Brown, G. M. Veith, H. Luo, H. Liu and S. Dai, *JACS*, 2012, **134**, 10478-10484.
- 14. M. G. Rabbani, A. K. Sekizkardes, O. M. El-Kadri, B. R. Kaafarani and H. M. El-Kaderi, *J. Mater. Chem.*, 2012, **22**, 25409-25417.
- 15. H. Lim, M. C. Cha and J. Y. Chang, *Macromol. Chem. Phys.*, 2012, 213, 1385-1390.
- 16. A. Modak, M. Nandi, J. Mondal and A. Bhaumik, *Chem. Commun.*, 2012, 48, 248-250.
- 17. H. A. Patel and C. Yavuz, Chem. Commun., 2012.
- 18. T. E. Reich, S. Behera, K. T. Jackson, P. Jena and H. M. El-Kaderi, *J. Mater. Chem.*, 2012, **22**, 13524-13528.
- 19. M. G. Rabbani, T. E. Reich, R. M. Kassab, K. T. Jackson and H. M. El-Kaderi, *Chem. Commun.*, 2012, **48**, 1141-1143.
- 20. H. A. Patel, F. Karadas, A. Canlier, J. Park, E. Deniz, Y. Jung, M. Atilhan and C. T. Yavuz, *J. Mater. Chem.*, 2012, **22**, 8431-8437.
- 21. T. Ben, Y. Li, L. Zhu, D. Zhang, D. Cao, Z. Xiang, X. Yao and S. Qiu, *Energy Environ*. *Sci.*, 2012.
- 22. Z. Wang, S. Yuan, A. Mason, B. Reprogle, D.-J. Liu and L. Yu, Macromolecules, 2012.
- 23. H. Ma, H. Ren, X. Zou, F. Sun, Z. Yan, K. Cai, D. Wang and G. Zhu, *J. Mater. Chem. A*, 2013, **1**, 752-758.
- 24. S. J. Garibay, M. H. Weston, J. E. Mondloch, Y. J. Colón, O. K. Farha, J. T. Hupp and S. T. Nguyen, *CrystEngComm*, 2013, **15**, 1515-1519.
- 25. C. Xu and N. Hedin, J. Mater. Chem. A, 2013, 1, 3406-3414.
- 26. M. R. Liebl and J. Senker, Chem. Mat.
- 27. W. L. Queen, E. D. Bloch, C. M. Brown, M. R. Hudson, J. A. Mason, L. J. Murray, A. J. Ramirez-Cuesta, V. K. Peterson and J. R. Long, *Dalton Trans.*, 2012, **41**, 4180-4187.