Supporting Information For

Tubular graphitic-C₃N₄: A Prospective material for energy storage and green photocatalyst

Figure S1. SEM imageof tubular g-C₃N₄.

Figure S2. HRTEM image of tubular $g-C_3N_4$.

Figure S3. Nitrogen- adsorption curves of $g-C_3N_4$ and tubular $g-C_3N_4$ for BET surface area.

Figure S4. 1^{st} , 500th and 1000th charging - discharging curves of g-C₃N₄ within a potential window of -0.2 –0.8 V for current density 0.5 A/g.

Figure S5. C-V curve of tubular g- C_3N_4 within a potential window of -0.2 –1.0V using a three-electrode cell at a scan rate of 5mV/s.

Figure S6. C-V curve of tubular g- C_3N_4 within a potential window of -0.2 –1.0V using a three-electrode cell at a scan rate of 20mV/s.

Table S1. Specific capacitance comparison of the best-performing nitrogen-doped carbon materials in the literature.					
Materials	Electrolyte[L ⁻¹]	Capacitance [Fg ⁻¹]	Current Density (Ag ⁻¹)	Reference	
N-Enriched Nanocarbons	1M H ₂ SO ₄	210	0.1	1	
N-enriched carbon	$1 \text{ M H}_2 \text{SO}_4$	201	0.5	2	
MWCNTs	4 M H ₂ SO ₄	62	0.2	3	
CNTs	6 M KOH	198	0.05	4	
N-enriched carbon	$1 \text{ M H}_2 \text{SO}_4$	201	0.5	5	
N-enriched carbon	1 M TEABF ₄	52	$1 \text{mA}/\text{cm}^2$	6	
O-rich carbons	$1 \text{ MH}_2 \text{SO}_4$	198	1	7	
N-carbon	$5 \text{ M H}_2 \text{SO}_4$	211	1	8	
CNTs/ N-carbon	$1 \text{ M H}_2 \text{SO}_4$	100	0.2	9	
N-Doped Graphene	6 M KOH	246	1	10	
N-doped carbonnanocage	6 M KOH	248	1	11	
N-Doped Carbon	6 M KOH	202	1	12	
Porous 3D	1M TEABF ₄	231	1	13	
graphene					
Acrylonitrile– propylene	$1M H_2SO_4$	340	0.2	14	
Melamine	6 M KOH	280		14	
Ethylene diamine– carbon tetrachloride	6 М КОН	318		14	
Urea–brown coal	6 M KOH	341		14	
Tubular g-C ₃ N ₄	6 M KOH	233	0.2	Our work	

Table S2. First order rate constant comparison between different reported results.						
Dye	Photocatalysts	$k(\min^{-1})$	Reference	Our Work		
МО	Born doped g-C ₃ N ₄	0.004	15	0.0067		
	$g-C_3N_4$ at 600^0C	0.003	15			
	$g-C_3N_4$ at 580^0C	0.004	15			
	$g-C_3N_4$	0.005	16			
MB	TiO ₂ nanotubes	0.024	17	0.021		
	TiO ₂	0.0012	18			
	g-C ₃ N ₄ nanoplates	0.0016	19			
	g-C ₃ N ₄ nanorods	0.002	19			

Supplementary References

- 1. Xiaoqing Yang, Dingcai Wu, Xiaomei Chen, Ruowen Fu, J. Phys. Chem. C, 2010, 114, 8581.
- 2. G. Lota, K. Lota, E. Frackowiak, Electrochem. Comm., 2007, 9, 1828.
- 3. K. Jurewicz, K. Babel, R. Pietrzak, S. Dupleux, H. Wachowska, Carbon, 2006, 44, 2368.
- 4. Denisa Hulicova-Jurcakova, Masaya Kodama, Soshi Shiraishi, Hiroaki Hatori, Zong Hua Zhu, Gao Qing Lu., Adv. Funct. Mater., 2009, 19, 1800.
- 5. E. Frackowiak, G. Lota, J. Machnikowski, C. Vix-Guterl, F. Be'guin, Electrochim. Acta, 2006, 51, 2209.
- 6. Y. J. Kim, Y. Abe, T. Yanagiura, K. C. Park, M. Shimizu, T. Iwazaki, S. Nakagawa, M. Endo, M. S. Dresselhaus, Carbon, 2007, 45, 2116.
- 7. E. Raymundo-Pin^ero, F. Leroux, F. Be'guin, Adv. Mater., 2006, 18, 1877.
- 8. W. Li, D. Chen, Z. Li, Y. Shi, Y. Wan, J. Huang, J. Yang, D. Zhao, Z. Jiang, Electrochem. Comm., 2007, 9, 569.
- 9. Beguin, F., Szostak, K., Lota, G., Frackowiak, E., Adv. Mater., 2005, 17, 2380.
- Zhenhai Wen, Xinchen Wang, Shun Mao, Zheng Bo, Haejune Kim, Shumao Cui, Ganhua Lu, Xinliang Feng, Junhong Chen, Adv. Mater., 2012, 24, 5610
- Yueming Tan, Chaofa Xu, Guangxu Chen, Zhaohui Liu, Ming Ma, Qingji Xie, Nanfeng Zheng, Shouzhuo Yao, ACS Appl. Mater. Interfaces, 2013, 5, 2241.
- 12. Chen, L. F., Zhang, X. D., Liang, H. W., Kong, M. Guan, Q. F. Chen, P. Wu, Z. Y. Yu, S. H. ACS Nano, 2012, 6, 7092.
- 13. Long Zhang, Fan Zhang, Xi Yang, Guankui Long, Yingpeng Wu, Tengfei Zhang, Kai Leng, Yi Huang, Yanfeng Ma, AoYu, Yongsheng Chen, Scientific report, 2013, 3, 1408.
- 14. Wenzhong Shen and Weibin Fan, J. Mater. Chem. A, 2013, 1, 999.
- 15. S. C. Yan, Z. S. Li, Z. G. Zou, Langmuir, 2010, 26, 3894.
- 16. Sheng Chu, Ying Wang, Yong Guo, Jianyong Feng, Cuicui Wang, Wenjun Luo, Xiaoxing Fan, Zhigang Zou. ACS Catal., 2013, 3, 912.
- 17. Sung-Yeon Kim, Tae-Ho Lim, Tae-Sun Chang, Chae-Ho Shin, Catalysis Letters, 2007, 117, 112.
- 18. T. X. Wu, G. M. Liu, J. C. Zhao, H. Hidaka, N. Serpone, J. Phys. Chem. B, 1998, 102, 5845.
- 19. Xiaojuan Bai, Li Wang, Ruilong Zong, Yongfa Zhu, J. Phys. Chem. C., DOI:10.1021/jp402062d.