Electronic Supplementary Information

Mesoporous Au–TiO₂ Nanoparticle Assemblies as Efficient Catalysts for the Chemoselective Reduction of Nitro Compounds

Ioannis Tamiolakis^a, Stella Fountoulaki^b, Nikolaos Vordos^c, Ioannis N. Lykakis^b and

Gerasimos S. Armatas *a

^a Department of Materials Science and Technology, University of Crete, Heraklion 71003, Crete, Greece.

^b Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.

^c Department of Electrical Engineering, Kavala Institute of Technology, 65404 Kavala, Greece.

* E-mail: garmatas@materials.uoc.gr.

Calculation method for density of gold edge sites

Assuming spherical-shaped Au nanoparticles, the number of Au nanoparticles was calculated by the following equation:

$$N_{p} = \frac{m_{Au}}{V \times d}$$
(1)

where, m_{Au} is the total weight of Au in each sample, V is the volume of each Au nanoparticle $(V=4/3\pi r^3)$ assuming spherical shape and average radius of Au particles r, and d is the mass density of gold (19.3 g cm⁻³).

Then, the density of edge site of Au atoms (D_{es}) was calculated by dividing the size of the contact area between gold and TiO₂ nanoparticles (derived as $L = N_p \times 2\pi r$) by the size of a single Au atom (d_{Au} =0.33 nm) and the surface area of the titania support (SA=159 m²g⁻¹) according to the following equation:

$$D_{es} = \frac{N_{p} \times 2\pi r}{d_{Au} \times SA}$$
(2)

Catalyst	Reaction conditions:	Nitro compound	Time/yield	Ref.
	Au/nitroarene/NaBH ₄			
Au-MTA	0.1/1/6	Several aryl nitro compounds	1-2h / 92-99%	In this work
Au/NAP-MgO ^a	1/1/50	Several aryl nitro compounds	1-7h / 80-98%	[30]
Au/PNIPA ^b	6.25/1.1/1000	4-Nitrophenol, Nitrobenzene	40min (15 °C)/	[31]
			~85% (4NP),	
			<20% (NB) conv.	
Au/PVP^{c}	0.5/1/15	4-Nitrophenol	20 min	[32]
$Au/PMMA^d$	1/15/22500	4-Nitrophenol	10 min / almost	[33]
			complete conv.	
Au/PAA/PAH ^e	-/1/100	Several aryl nitro compounds	73-99% ^f	[34]

Table S1.	Comparison	of Au-MTA	with various	Au supported	l catalysts.
-----------	------------	-----------	--------------	--------------	--------------

^{*a*} Nano active magnesium oxide plus, ^{*b*} Polystyrene (PS)-poly(N-isopropylacrylamide), ^{*c*} Poly-vinylpyrrolidone, ^{*d*} Poly(methyl methacrylate). ^{*e*} Poly(acrylic acid)/poly(allylamine hydrochloride),

^fReaction under 0.015 mL/cm·s flux of nitro compound.

Figure S1. Typical TEM images of mesoporous Au-MTA samples.

Figure S2. Diffuse reflectance UV-vis spectra of mesoporous MTA and Au-MTA materials.

Figure S3. Recycling study of the mesoporous 2% Au-MTA catalyst (*experimental conditions:* 0.2 *mmol of p-nitrotoluene, 20 mg of catalyst, 6 mmol of NaBH*₄ 2 *mL of ethanol, room temperature, 2 h*).

Figure S4. Typical EDS-SEM microanalysis spectra obtained from the 2% Au-MTA sample (a) before and (b) after catalytic reactions. The EDS spectra show an average Au/Ti atomic ratio of ~0.85:99.15 and ~0.84:99.16 that correspond to a gold loading of ~2.07 and ~2.04 wt.% for fresh and four-times reused 2% Au-MTA catalyst, respectively.

Figure S5. (a) Nitrogen adsorption-desorption isotherms at 77K of four-times reused 2% Au-MTA catalyst. Analysis of the adsorption branch with the BET method gives surface area of 96 m^2g^{-1} and total pore volume of 0.22 cm³g⁻¹. (b) NLDFT pore size distribution calculated from the adsorption branch, indicating mesopore diameter of 7.3 nm.