Supplementary Information

Electrospun porous LiNb₃O₈ nanofibers with enhanced lithium-storage properties

Henghui Xu,^a Jie Shu,^b Xianluo Hu,^{*a} Yongming Sun,^a Wei Luo,^a and Yunhui Huang^{*a}

E-mail: huxl@mail.hust.edu.cn; huangyh@mail.hust.edu.cn

^a State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China

^b School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China

Fig. S1 A typical EDX spectrum of $LiNb_3O_8$, suggesting the existence of Nb, O, and C, where the signal of C is generated from the conducting tape for the sample holder.

Fig. S2 The in-situ XRD patterns in the range of $20-45^{\circ}$ of LiNb₃O₈ anode during the second cycle at 30 mA g⁻¹ at specified points shown in Figure 8a.

Fig. S3 (a) Raman spectrum and (b) TG result of the $LiNb_3O_8@C$ nanofibers measured at a heating rate of 10 °C min⁻¹ in a flowing air.

Fig. S4 Comparison of the cycling stability at various C-rates for the carbon-free and coated LiNb₃O₈ samples.