Supporting Information

A macroporous LiFePO₄ as a cathode for an aqueous rechargeable lithium battery of high energy density

Yuyang Hou^a, Xujiong Wang^a, Yusong Zhu^a, Chenglin Hu^a, Zheng Chang^a, Yuping Wu^{*a} and Rudolf Holze^b

1. The SEM micrograph of the PS template

Figure S1. SEM micrograph of the PS template to prepare three dimensional (3D)-ordered macroporous LiFePO₄.

The SEM of the PS template is shown in **Figure S1**. The stacking of the PS particles is three-dimensionally regular and the shapes of the pores are very uniform. The PS particle size is about 200 nm.

2. Cycling behaviour of the LiFePO₄ cathode in 0.5 mol l⁻¹ Li₂SO₄ aqueous solution

Figure S2. Cycling behaviour of the LiFePO₄ cathode in 0.5 mol l^{-1} Li₂SO₄ aqueous solution at the current density of 1000 mA g⁻¹.

Cycling behaviour of the LiFePO₄ cathode in 0.5 mol l^{-1} Li₂SO₄ aqueous solution at the current density of 1000 mA g⁻¹ is shown in **Figure S2**, which was tested using activated carbon as the counter electrode and SCE as the reference electrode. It shows clearly that the LiFePO₄ in the aqueous solution presents good cycling behaviour as in the aqueous electrolytes.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A This journal is O The Royal Society of Chemistry 2013

3. The "cross-over" effect of Li^+ ions in the composite coating

Figure S3 Schematic illustration of the "cross-over" effect of Li^+ ions in the composite coating.