Supporting Information

Understanding the fast lithium storage performance of hydrogenated TiO₂ nanoparticles

Yong Yan,^{a+} Bo Hao,^{b+} Dong Wang,^{a*} Ge Chen,^{b*} Eric Markweg,^c Arne Albrecht,^d and Peter Schaaf^a

[a] Chair materials for Electronics, Institute of Materials Engineering and Institute of Microand Nanotechnologies MarcoNano[®], Ilmenau University of Technology, Gustav-Kirchhoff-Str. 5, 98693 Ilmenau, Germany

[b] College of Environmental & Energy Engineering, Beijing University of Technology,Pingleyuan 100, 100124, Beijing, P.R. China

[c] Chair micromechanical Systems, Institute of Micro- and Nanotechnologies MarcoNano[®],
Ilmenau University of Technology, Max-Planck-Ring 12, 98693 Ilmenau, Germany
[d] Center for Micro- and Nanotechnologies MacroNano[®], Ilmenau University of Technology,

[u] center for where and whoteenhologies wherefor and , inhenad entwersity of

Gustav-Kirchhoff-Str. 7, 98693 Ilmenau, Germany

 $\begin{array}{ccc} & \operatorname{Pristine}\,\mathrm{TiO}_2 & \operatorname{TiO}_2\,\mathrm{with}\,\mathrm{H}_2\,\mathrm{annealing} & \operatorname{TiO}_2\,\mathrm{with}\,\mathrm{H}_2\,\mathrm{plasma} \\ \textbf{Figure S1.} \ The \ photographs \ of \ TiO_2 \ before \ and \ after \ hydrogenation: (A) \ Pristine \ TiO_2. (B) \\ TiO_2 \ after \ thermal \ annealing \ under \ \mathrm{H}_2 \ atmosphere \ without \ plasma. (C) \ TiO_2 \ after \ \mathrm{H}_2 \ plasma \\ treatment. \end{array}$

Figure S2. XRD pattern of pristine- and H-TiO₂.

Figure S3. XPS O 1s core level spectrum of pristine- and H-TiO₂.

Figure S4. XPS valence band spectra of pristine- and H-TiO₂.

Figure S5. Polarization of ΔE versus rate plots of pristine- and H-TiO₂ electrodes.

Figure S6. The peak discharge current of pristine- and $H-TiO_2$ electrodes measured at various scan rates. (A) $H-TiO_2$ electrode. (B) Pristine-TiO₂ electrode.

Figure S7. The calculated C_1 and C_2 for two samples using Eq. (2) that correspond to the slope and the y-axis intercept point, respectively. (A) H-TiO₂. (B) Pristine-TiO₂.