Journal of Materials Chemistry A

Supplementary Information for:

Dichotomous adsorption behaviour of dyes on an amino-functionalised

metal-organic framework, amino-MIL-101(Al)

Enamul Haque, Victor Lo, Andrew I. Minett, Andrew T. Harris and Tamara L. Church*

Laboratory of Sustainable Technology, School of Chemical & Biomolecular Engineering, The University of Sydney, NSW 2006, Australia. *E-mail: tamara.church@sydney.edu.au*

Contents	Page
1. Dyes: structures and calibration curves	S 1
2. Characterisation of amino-MIL-101(Al)	S2
3. Adsorption of methylene blue (MB) on amino-MIL-101(Al)	S3
4. Rate data and treatment	S7
5. XPS analysis of amino-MIL-101(Al) before and after MB adsorption	S9
6. Adsorption of methyl orange (MO) on amino-MIL-101(Al)	S10
7. Comparison of MB and MO adsorption on amino-MIL-101(Al)	S14
8. Characterisation of amino-MIL-101(Al) after dye exposure	S17
9. Adsorption of MB on MIL-101(Al)	S18
10. Reference	S18

1. Dyes: Structures and Calibration Curves

The structures of methylene blue (MB) and methyl orange (MO) are shown in Figure S1, and

UV-vis calibration curves for the dyes are presented in Figure S2.

Methylene Blue (MB)

Methyl Orange (MO)

Fig. S1. Structures of the methylene blue and methyl orange dyes.

Fig. S2. UV-vis calibration curves for MB (left) and MO (right).

2. Characterisation of amino-MIL-101(Al)

Amino-MIL-101(Al) was characterised by X-ray diffraction (XRD), N₂ adsorption-desorption, and thermogravimetry, as shown in Figures S3–S5. X-ray photoelectron spectroscopy (XPS) data for amino-MIL-101(Al) is discussed and shown on page S9.

Fig. S3. (a) Experimental XRD pattern of amino-MIL-101(Al); (b) Simulated pattern of MIL-101 phase.

Fig. S4. Pore size distribution curve of amino-MIL-101(Al). Calculated from the adsorption branch of the N_2 adsorption-desorption isotherm (acquired at -196 °C) using BJH method.

Fig. S5. Thermogravimetric analysis of amino-MIL-101(Al) under air flow of 60 mL min⁻¹ at a heating rate of 5 °C min⁻¹.

3. Adsorption of methylene blue (MB)

Fig. S6. Digital images of before and after adsorption of MB by amino-MIL-101(Al). $[MB]_0 = 50$ ppm, t = 6 h, m_{amino-MIL-101(Al)} = 0.01 g.

Fig. S7. UV-visible spectra of MB solutions after exposure to 5 mg of amino-MIL-101(Al) at 30 °C. (a) $[MB]_0 = 20$ ppm, (b) $[MB]_0 = 30$ ppm, (c) $[MB]_0 = 40$ ppm.

Fig. S8. Plots of (a) pseudo-second-order and (b) pseudo-first-order kinetics for MB adsorption over 5 mg amino-MIL-101(Al) at 30 °C and $[MB]_0 = 20$, 30 or 40 ppm. (c) Three replicates of the adsorption of MB over 5 mg amino-MIL-101(Al) at 30 °C and $[MB]_0 = 40$ ppm, with accompanying kinetic fits.

The maximum adsorption capacity of amino-MIL-101(Al) for MB compared favourably to

those of many reported sorbents. A comparison is given in Table S1.

Adsorbent	Maximum Adsorption Capacity, Q_o (mg g ⁻¹)	Reference
Chitosan-g-poly(acrylic acid)-vermiculite hydrogel composite	1685	J. Environ. Sci. 2010, 22, 486–493.
Teak wood bark	915	Water Air Soil Pollut. 1999, 114, 423–438.
Poly(methacrylic acid)-modified biomass of baker's yeast	870	J. Hazard. Mater. 2009, 168, 1147–1154.
Amino-MIL-101-Al	762 ± 12	This work
Poly(amic acid)-modified biomass of baker's yeast	680	Appl. Biochem. Biotechnol. 2010, 160, 1394–1406.
Magnetic modified beer yeast	609	Environ. Sci. Pollut. Res. 2013, 20, 543-51.

Activated carbon produced from New Zealand	588	Chem. Eng. J. 2008, 135, 174–184.
coal Papaya saed	556	I Hazard Matar 2000 162 030 044
A ativated earbon derived from periodiale	500	S. Huzuru. Mater. 2009, 102, 939–944.
Poly(vinylidene fluoride)-derived activated carbon	300	Chem. Ecol. 2008, 24, 283–295.
fibers	486	<i>Carbon</i> 2001 , <i>39</i> , 207–214.
Filtrasorb 400	476	Chem. Eng. J. 2008, 135, 174–184.
Straw activated carbon	472	Dyes Pigm. 2001, 51, 25–40.
Grass waste	458	J. Hazard. Mater. 2009, 166, 233–238.
Bamboo-based activated carbon	454	J. Hazard. Mater. 2007, 141, 819-825.
Coal-based activated carbon from anthracite	448	Ind. Eng. Chem. Res. 1991, 30, 2411–2416.
Activated carbon (molasses/sulphuric acid)	435	J. Hazard. Mater. 2005, 118, 259–263.
Activated carbon prepared from coconut husk	435	J. Hazard. Mater. 2008, 154, 337–346.
Jute fiber carbon	226	J. Colloid Interface Sci. 2005, 284, 78–82.
Vetiver roots activated carbon	423	J. Hazard. Mater. 2009, 165, 1029–1039.
Caulerpa lentillifera	417	Bioresour. Technol. 2007, 98, 1567–1572.
Olive-waste-derived activated carbon	403	Environ. Technol. 1998, 19, 1203-1212.
Activated carbon	400	J. Hazard. Mater. 2006, 134, 237–244.
Mesoporous carbons prepared using alkaline-treated zeolite	380	Colloids Surf. A 2009, 333, 115–119.
Activated carbon from Venezuelan bituminous coal	380	Chem. Eng. J. 2008, 135, 174–184.
Carbons prepared from coffee grounds	370	J. Hazard. Mater. 2010, 175, 779–788.
Rice husk activated carbon	344	Dyes Pigm. 2001, 51, 25–40.
Peat	324	J. Hazard. Mater. 2007, 144, 412–419.
Coal	327	Water Air Soil Pollut. 1999, 114, 423–438.
Black cherry stones	322	J. Hazard. Mater. 2010, 180, 656–661.
Rice husk	313	Water Air Soil Pollut. 1999, 114, 423–438.
Clay	300	Ann. Chim. 2000, 25, 615–626.
Spent tea leaves	300	J. Hazard. Mater. 2009, 161, 753–759.
Filtrasorb 400	299	J. Hazard. Mater. 2009, 165, 291–299.
Guava (Psidium guajava) leaf	295	J. Hazard. Mater. 2008, 152, 276–286.
Activated carbon prepared from rattan sawdust	294	Dyes Pigm. 2007, 75, 143–149.
Montmorillonite clay	289	J. Colloid Interface Sci. 2009, 332, 46–53.
Jackfruit peel	286	J. Hazard. Mater. 2009, 162, 344-350.
Oregano stem	286	Energy Fuels 2002, 20, 2636–2641.
Alga Sargassum muticum seaweed	279	J. Chem. Technol. Biotechnol. 2005, 80, 291–298.
Coconut-shell-derived activated carbon	278	Dyes Pigm. 2001, 51, 25–40.
Cotton waste	278	Water Air Soil Pollut. 1999, 114, 423–438.
Activated sludge biomass	256	J. Hazard. Mater. 2004, 108, 183–188.
Jute fiber carbon	226	<i>Chemosphere</i> 2001 , <i>45</i> , 51–58.
Diatomite	198	J. Environ. Manage. 2003, 69, 229–238.
MOF-235	187	J. Hazard. Mater. 2011, 185, 507–511.
Bentonite	175	J. Hazard. Mater. 2009, 167, 630–633.
Groundnut-shell-derived activated carbon	165	Dyes Pigm. 2001, 51, 25–40.
Perlite	162	Water Air Soil Pollut. 2000, 120, 229–248.
Hair	158	Water Air Soil Pollut. 1999, 114, 423–438.
Diatomite (Jordan)	157	Appl. Clay Sci. 2003, 24, 111–120.

Graphene	154	Colloids Surf. B 2012, 90, 197–203.
Cobalt doping hectorite	151	J. Hazard. Mater. 2010, 175, 965–969.
Bamboo dust activated carbon	143	Dyes Pigm. 2001, 51, 25-40.
Bagasse bottom ash	143	Res. J. Chem. Environ. 2002, 6, 61–65.
Hair	120	Water Air Soil Pollut. 1986, 29, 273–283.
Sewage sludge from an urban wastewater	115	Biochem. Eng. J. 2003, 15, 59–68.
Crushed brick	97	J. Hazard. Mater. 2006, 135, 264–273.
Tea waste	85	J. Hazard. Mater. 2009, 164, 53-60.
Al-MCM-41	78	J. Hazard. Mater. 2010, 178, 349–355.
Fly ash	54	J. Am. Inst. Chem. Eng. 1974, 20, 228–238.
Carbonised press mud	50	Res. J. Chem. Environ. 2002, 6, 61–65.
Magnetite-loaded MWCNTs	48	J. Hazard. Mater. 2011, 198, 282–290.
Biopolymer oak sawdust	38	J. Am. Sci. 2010, 6, 267–283.
Perlite	31	Water Air Soil Pollut. 2000, 120, 229–248.
Banana Peel	21	J. Hazard. Mater. 2002, 92, 263–275.
Orange Peel	19	J. Hazard. Mater.2002, 92, 263–275.
Natural tripoli	17	Am. J. Environ. Sci. 2009, 5, 197–208.
Sunflower seed	16	Bioresour. Technol.2008, 14, 6214–6222.
Hazelnut-shell-derived activated carbon	8.8	Micropor. Mesopor. Mater. 2003, 66,189-95.

Fig. S9. Comparison of UV-visible spectra of a MB solution during adsorption over 5 mg amino-MIL-101(Al) at different temperatures. (a) $[MB]_0 = 20$ ppm, (b) $[MB]_0 = 30$ ppm, (c) $[MB]_0 = 40$ ppm.

Fig. S10. Comparison of the UV-visible spectrum of MB (20 ppm) with those of dyes desorbed from MOF–MB composites during sonication in water for 12 h. MOF–MB composites were prepared by adsorption of MB ($[MB]_0 = 20$ ppm) on 5 mg of amino-MIL-101(Al) for 12 h, at 30, 40 or 50 °C.

Fig. S11. Reuse of amino-MIL-101(Al) as a sorbent for methylene blue: (a) Isotherms for MB adsorption over fresh (1^{st} adsorption) and used amino-MIL-101(Al) (5 mg) after 12 h at 30 °C; and (b) Langmuir plots of the isotherms of (a).

4. Rate data and treatment

Pseudo-second-order kinetic treatment: The dye adsorption as a function of time was fit to the pseudo-second-order rate equation shown in its derivative and integrated forms in Eqs. S1 and S2, respectively.¹

$$\frac{\mathrm{d}q_t}{\mathrm{d}t} = k_2 (q_\mathrm{e} - q_t)^2$$
Eq. S1
Eq. S2

Where q_e is the amount of dye adsorbed (mg g⁻¹) at equilibrium, and q_t the amount adsorbed at time *t*. When t/q_t is plotted against *t*, the second-order kinetic constant (k_2) can be calculated as $k_2 = \text{slope}^2/\text{intercept}$.

Pseudo-first-order kinetic treatment: The dye adsorption as a function of time over the period

t = 5-60 min was fit to the pseudo-first-order rate equation (integrated form shown in Eq. S3).

$$\ln(q_{\rm e}-q_t) = \ln q_{\rm e} - k_{\rm l}t$$

Eq. S3

From Equation S3, the kinetic constant (k_1) of a pseudo-first-order reaction is equal to the

slope of a plot of $\ln(q_e - q_t)$ vs. t.

Table S2. Pseudo-second-order kinetic 'constants' (k_2) for the adsorptions of MB and MO on amino-MIL-101(Al) at $[dye]_0 = 20$ or 30 ppm, along with correlation constants (R²) for the plots of t/q_t vs. t used to derive the values.

	Pseudo-second-order kinetics constants k_2 (g mg ⁻¹ min ⁻¹) ^{<i>a</i>}					
Dye	20 ppm		Dye 20 ppm		30 pp	m
	k_2	R^2	k_2	R^2		
MB	8.61 x 10 ⁻⁴	0.996	1.06 x 10 ⁻³	0.997		
MO	6.23 x 10 ⁻⁵	0.992	8.30 x 10 ⁻⁵	0.973		

^{*a*}The data were not completely described by either first- or secondorder models, so the rate 'constants' depend on $[dye]_0$. Values are derived from data in Figures S8a and S14a. See Table 1 for $[dye]_0 =$ 40 ppm.

Table S3. Pseudo-first-order kinetic 'constants' (k_l) for the adsorptions of MB and MO on amino-MIL-101(Al) at $[dye]_0 = 20$ or 30 ppm, along with correlation constants (R²) for the plots of $\ln(q_e - q_l)$ vs. *t* used to derive the values.

	Pseudo-first-order kinetics constants $k_1 (\min^{-1})^a$				
Dye	20 ppm		e 20 ppm 30 p		pm
	k_{I}	R^2	k_{l}	R^2	
MB	0.0432	0.992	0.0584	0.989	
MO	0.00369	0.995	0.00540	0.972	

^aThe data were not completely described by either first- or second-order models, so the rate 'constants' depend on $[dye]_0$. Values are derived from data in Figures S8b and S14b. See Table 1 for $[dye]_0 = 40$ ppm.

5. XPS analysis of amino-MIL-101(Al) before and after MB adsorption

X-ray photoelectron spectroscopy (XPS, ESCALAB250Xi, Thermo scientific, UK; X-ray source: monochromated Al K α , Power: 164 W (10.8 mA and 15.2 kV); binding energy reference: C1*s* = 285.0 eV for adventitious hydrocarbon) was used to examine the chemical states of different elements in amino-MIL-101(Al) before and after MB adsorption (Figure S12). The XPS results are detailed in Tables S4 and S5.

Table S4. XPS data for amino-MIL-101(Al).

Orbital	Ebinding, start	E _{binding} , peak	E _{binding} , end	FWHM ^a	Peak Area	Atom %	Coefficient ^b
	(eV)	(eV)	(eV)	(eV)	(Counts eV s ⁻¹)	(%)	
C1s A	294.38	284.92	281.48	1.49	28829.48	29.22	1
C1s B	294.38	286.44	281.48	1.49	8209.94	8.32	1
C1s C	294.38	289.09	281.48	1.49	12156.84	13.49	1
C1s D	294.38	290.7	281.48	1.49	1756.91	1.78	1
Al2p	78.98	75.06	72.38	1.59	4008.36	7.46	0.537
N1s A	403.88	399.61	395.28	1.61	9090.85	5.18	1.8
N1 <i>s</i> B	403.88	401.39	395.28	1.61	2593.65	1.48	1.8
O1 <i>s</i>	537.08	532.41	527.68	1.92	92826.29	33.07	2.93

^a Full width at half maximum. ^b Atom-specific coefficient used to calculate sample composition.

Table S5. XPS data for amino-MIL-10	01(Al) following adsorption of MB	$([MB]_0 = 40 \text{ ppm}, T = 30 \text{ °C}, t = 12 \text{ h}).$

Orbital	Ebinding, start	Ebinding, peak	Ebinding, end	$FWHM^{a}$	Peak Area	Atom %	Coefficient ^b
	(eV)	(eV)	(eV)	(eV)	(Counts eV s ⁻¹)	(%)	
C1s A	293.58	284.97	281.98	1.43	23786.21	29.60	1
C1s B	293.58	286.25	281.98	1.43	13780.05	16.11	1
C1s C	293.58	287.77	281.98	1.43	2822.95	2.41	1
C1s D	293.58	289.08	281.98	1.43	6592.63	8.21	1
C1s E	293.58	290.74	281.98	1.43	1127.74	1.40	1
Al2p	78.98	74.86	71.88	1.64	2278.7	7.34	0.537
N1s	404.08	399.71	395.98	1.8	9960.15	6.97	1.8
O1s	537.38	532.25	527.68	2.01	60436.62	26.43	2.93
S2p3 A	171.68	164.65	161.52	1.41	1121	1.25	1.11
S2p3 B	171.68	168.05	161.52	1.77	168.84	0.18	1.11
F1s A	694.88	689.48	684.88	1.75	353.18	0.10	4.43

^a Full width at half maximum. ^b Atom-specific coefficient used to calculate sample composition.

Fig. S12. XPS of amino-MIL-101(Al) (a) as-prepared; (b) after adsorption of MB for 12 h at 30 °C ([MB]₀ = 40 ppm).

Fig. S13. C1*s* region of the XPS patterns of amino-MIL-101(Al) after and before adsorption of MB for 12 h at 30 °C ($[MB]_0 = 40$ ppm).

6. Adsorption of methyl orange (MO)

Figure S14. (a) Isotherm for MO adsorption over 5 mg of amino-MIL-101(Al) after 12 h at 30 °C; (b) Langmuir plot of the isotherm in (a), straight line is $C_e/q_e = 0.00532 C_e + 0.260$.

Table S6. Maximum adsorption capacity of methyl orange (MO) on various adsorbents.

Adsorbent	Maximum Adsorption Capacity, $Q_o (mg g^{-1})$	Reference
Biomass (Schinopsis balansae)	483	J. Hazard. Mater. 2010, 174, 9-16.
MOF-235	477	J. Hazard. Mater. 2011, 185, 507–511.
Coal-based activated carbon from anthracite	448	Ind. Eng. Chem. Res. 1991, 30, 2411–2416.
Coconut-husk-based activated carbon	435	J. Hazard. Mater. 2008, 154, 337–346.
Sunflower stalks	428	Color. Technol. 2004, 118, 256–269.
Coconut-shell-derived activated carbon	368	Ind. Eng. Chem. Res. 1991, 30, 2411–2416.
Secondary bagasse pith	339	Color. Technol. 2002, 118, 256–269.
Clay	300	Ann. Chim. Sci. Mater. 2000, 25, 615–626.
Rattan-sawdust-derived activated carbon	294	Dyes Pigm. 2007, 75, 143–149.
Cotton waste	277	Water Air Soil Pollut. 1999, 114, 423–438.

Activated sludge biomass	256	J. Hazard. Mater. B 2004, 108, 183–188.
Cotton waste	240	Color. Technol. 2005, 118, 256–269.
Jute fiber Carbon	226	J. Colloid Interface Sci. 2005, 284, 78-82.
MIL-101(Cr)	194	J. Hazard. Mater. 2010, 181, 535-542.
Amino-MIL-101(Al)	188 ± 9	This work
Diatomite	157	J. Environ. Manage. 2003, 69, 229–238.
Spirodela polyrrhiza biomass	145	Environ. Pollut. 2003, 125, 385–392.
Coir pith	120	Waste Manage. 2001, 21, 381–387.
Tea waste	85	J. Hazard. Mater. 2009, 164, 53-60.
Raw date pits	80	Process Biochem. 2003, 39, 193–202.
Fly ash	76	Water Res. 2003, 37, 4938–4944.
Peanut hull	68	J. Hazard. Mater. 2005, 121, 247–250.
MCM-22	$1.8 \times 10^{-4} \text{ mol/g}$	J. Colloid Interface Sci. 2006, 295, 71–78.
Rice husk	41	J. Colloid Interface Sci. 2005, 286, 90–100.
Fe(III)/Cr(III) hydroxide	23	J. Environ. Manage. 2005, 74, 207–215.
Banana peel	21	J. Hazard. Mater. 2002, 92, 263–274.
Orange peel	21	J. Hazard. Mater. 2002, 92, 263–274.
Dead fungus Aspergillus niger	19	Water Qual. Res. J. Can. 2000, 35, 95–111.
Silica	11	Appl. Geochem. 2002, 17, 1159–1164.
Neem leaf powder	8.8	Dyes Pigm. 2005, 65, 51–59.
Clay	6.3	J. Colloid Interf. Sci. 2004, 269, 310–314.
Fly ash	5.6	J. Colloid Interface Sci. 2005, 284, 14–21.
Glass fibers	2.2	J. Colloid Interface Sci. 2005, 286, 807–811.

Fig. S15. Plots of (a) pseudo-second-order and (b) pseudo-first-order kinetics for MO adsorption over 5 mg amino-MIL-101(Al) at 30 °C and $[MB]_0 = 20$, 30 or 40 ppm. (c) Three replicates of the adsorption of MO over 5 mg amino-MIL-101(Al) at 30 °C and $[MB]_0 = 40$ ppm, with accompanying kinetic fits.

Fig. S16. (a) Isotherms for MO adsorption over 5 mg of amino-MIL-101(Al) for 12 h at 30, 40 and 50 °C; (b) Langmuir plots of the isotherms in (a); (c) van't Hoff plot of the Langmuir constants b as a function of temperature, used to calculate the ΔH and ΔS of the MO adsorption over amino-MIL-101(Al).

Fig. S17. Reuse of amino-MIL-101(Al) as a sorbent for methyl orange. (a) Isotherms for MO adsorption over fresh (1st adsorption) and used amino-MIL-101(Al) (5 mg) after 12 h at 30 °C; and (b) Langmuir plots of the isotherms of (a).

7. Comparison of MB and MO adsorption on amino-MIL-101(Al)

Fig. S18. Comparison between the rates of MB and MO adsorption over 5 mg of amino-MIL-101(Al) at 30 °C at $[dye]_0 = (a) 20 \text{ ppm};$ (b) 30 ppm; and (c) 40 ppm.

Fig. S19. Pseudo-second-order kinetic treatment of MB and MO adsorption over 5 mg of amino-MIL-101(Al) at 30 °C and $[dye]_0 = (a) 20 \text{ ppm}; (b) 30 \text{ ppm}; and (c) 40 \text{ ppm}.$

Fig. S20. Pseudo-first-order kinetic treatment of MB and MO adsorption over 5 mg of amino-MIL-101(Al) at 30 °C and $[dye]_0 = (a)$ 20 ppm; (b) 30 ppm; and (c) 40 ppm.

8. Characterisation of amino-MIL-101(Al) after dye exposure

Samples of amino-MIL-101(Al) were exposed to MB or MO ($[dye]_0 = 40$ ppm) for 12 h at 50

°C, then separated from the solution by filtration and analysed using N_2 physisorption and ^{27}Al

NMR. The results are shown in Figures S21 and S22, respectively.

Fig. S21. N₂ adsorption–desorption isotherms of amino-MIL-101(Al) before adsorption, after MB adsorption, and after MO adsorption. Isotherms were acquired at -196 °C. Dye adsorptions used $[dye]_0 = 40$ ppm, T = 50°C, and t = 12 h.

40 30 20 10 0 -10 -20 -30 -40 ppm **Fig. S22**. Magic-angle spinning (MAS) ²⁷Al NMR spectra of amino-MIL-101(Al) before adsorption, after MB adsorption, and after MO adsorption. Recorded at 182.49 MHz, spinning at the magic angle at 20 kHz at ambient temperature. Data was acquired using a single pulse (~14°, $\pi/12$ pulse) with a 1-s recycle delay. Dye adsorptions used [dye]₀ = 40 ppm, T = 50 °C, and t = 12 h.

9. Adsorption of MB on MIL-101(Al)

Fig. S23. (a) Isotherms for MB adsorption over 5 mg of MIL-101(Al) for 12 h at 30, 40 and 50 °C; (b) Langmuir plots of the isotherms in (a) and (inset) van't Hoff plot of the Langmuir constants b as a function of temperature.

10. Reference

1. Y. S. Ho and G. McKay, *Process Biochem.*, 1999, **34**, 451-465.