
Supporting Information

Post modification by Aluminum oxide for improved performance in all-solid-state perovskite solar cells

Guangda Niu, Wenzhe Li, Fanqi Meng, Liduo Wang*, Haopeng Dong, and Yong Qiu

Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, P.R.China.

*To whom correspondence should be addressed: chldwang@mail.tsinghua.edu.cn

Fig. S1 SEM and TEM images: (a) cross sectional SEM image of TiO₂/CH₃NH₃PbI₃, (b) cross sectional SEM image of TiO₂/CH₃NH₃PbI₃/Al₂O₃, (c) SEM image of TiO₂/CH₃NH₃PbI₃, (d) SEM image of TiO₂/CH₃NH₃PbI₃/Al₂O₃, (e) HRTEM of TiO₂/CH₃NH₃PbI₃, (f) HRTEM of TiO₂/CH₃NH₃PbI₃/Al₂O₃.

(Figure S1 (c)(d)) shows that square or circular pillars of $CH_3NH_3PbI_3$ grows on TiO_2 and high resolution transmission electron microscope (HRTEM) (Figure S1 (e)(f)) reveals $CH_3NH_3PbI_3$ on TiO_2 and there are uncovered sites on TiO_2 , which is consistent with previous reports.

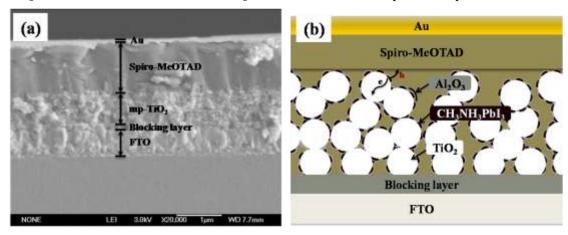


Fig. S2 Cross-sectional SEM image of the photovotaic device. Spiro-MeOTAD separates Au

electrode and mesoporous TiO_2 .