Supporting Information

Efficient Solid State Dye-Sensitized Solar Cells Based on An Oligomer Hole Transport Material and An Organic Dye

Bo Xu^a, Haining Tian^{a,*}, Dongqin Bi^b, Erik Gabrielsson^a, Erik Johansson^b, Gerrit Boschloo^b, Anders Hagfeldt^{b,c}, Licheng Sun^{a,c,*}

^a Organic Chemistry, Centre of Molecular Devices, Department of Chemistry, Chemical Science and Engineering, KTH Royal Institute of Technology, 10044, Stockholm, Sweden. Fax: (+46) 8-791-2333 E-mail: <u>hainingt@kth.se</u> <u>lichengs@kth.se</u>

^b Department of Physical and Analytical Chemistry, Uppsala University (UU), 75105 Uppsala, Sweden.

^c State Key Laboratory of Fine Chemicals, DUT-KTH Joint Research Centre on Molecular Devices, Dalian University of Technology (DUT), 116024 Dalian, China

Experimental

General methodology. Solvents were dried by standard procedures. All other chemicals were purchased from Sigma-Aldrich (Sweden) and used without further purification. Dye LEG4 bought from Dyenamo, Z907 purchased from Solaronix. NMR spectra were measured on Bruker AVANCE 500 MHz spectrometer. HRMS were performed using a Waters (USA) MALDI micro MX Matrix assisted laser desorption ionization-time of flight mass spectrometer. Electrochemical experiments were performed using a CH Instruments electrochemical workstation (model 660A). The measurements were carried out at room temperature with a conventional three-electrode configuration consisting of glassy carbon working electrode, a platinum wire counter electrode and a nonaqueous Ag/AgNO₃ reference electrode. The potentials are quoted against the ferrocene internal standard.

Synthetic Route:

Scheme S1. Synthesis route of X3

4'-bromo-N,N-bis(4-methoxyphenyl)-[1,1'-biphenyl]-4-amine (TPA)^[1].

A mixture of 4,4'-dibromo-1,1'-biphenyl (3.76 g, 12.0 mmol), Pd(OAc)₂ (18.0 mg, 0.08 mmol), DPPF (88.7 mg, 0.16 mmol), bis(4-methoxyphenyl)amine (0.92 g, 4.0 mmol), and sodium tert-butoxide (0.58 g, 6.0 mmol) in dry toluene (25 ml) was placed in a three-necked flask under a nitrogen atmosphere and stirred at 100 \degree for overnight. After cooling, the reaction was quenched by adding water, and then the reaction solution was extracted with ethyl acetate. The organic layer was dried over anhydrous Mg₂SO₄ and evaporated under vacuum. The product was purified by silica gel column chromatography (hexane/EtOAc, 5:1). White solid of **TPA** was obtained in 85 % yield (1.56 g). ¹H NMR (DMSO-d6, 500 MHz, 298 K), δ (ppm): 7.66 (d, 4H, J = 5.0 Hz), 7.50 (d, 2H, J = 5.0 Hz), 7.09 (d, 4H, J = 10.0 Hz), 6.93 (d, 4H, J = 10.0 Hz), 6.91 (d, 2H, J = 10.0 Hz), 3.80 (s, 6H);¹³C NMR (C₆D₆, 500 MHz, 298 K), δ (ppm): d 148.01, 145.05, 139.88, 132.89, 132.71, 131.86, 130.08, 128.56, 127.42, 124.95, 122.73, 120.91, 55.04. MS (ESI): Positive ion: m/z=460.08 [M+H]⁺, calculated 460.08.

Synthesis of N4,N4'-([1,1'-biphenyl]-4,4'-diyl)bis(N4,N4',N4'-tris(4-methoxyphenyl)-[1,1'-biphenyl]-4,4'-diamine (X3).

Using one-pot reaction^[2], to a solution of $Pd_2(dba)_3$ (6.2 mg, 0.06 mmol), and DPPF (5.5 mg, 0.1 mmol), in toluene (10 mL) under nitrogen atmosphere was added 4,4'-dibromo-1,1'-biphenyl (312 mg, 1.00 mmol) at room temperature, and the resultant mixture was stirred at that temperature for 10 min. Then, sodium tert-butoxide (240 mg, 2.50 mmol) and 4-methoxyaniline (246 mg, 2.00 mmol) were added to this solution and stirred at 90 °C for 8 h. At this time, the starting materials had disappeared as judged by TLC. To this solution was added an additional amount of sodium tert-butoxide (240 mg, 2.50 mmol) followed by 4'-bromo-N,N-bis(4-methoxyphenyl)-[1,1'-biphenyl]-4-amine (**TPA**) (921.0 mg, 2.00 mmol), and toluene (10 mL). The resultant reaction mixture was stirred at 100 °C for overnight. After cooling, the reaction was quenched by adding water, and then was extracted with ethyl acetate. The organic layer was dried over anhydrous Mg₂SO₄ and evaporated under vacuum. The collected residue was further purified by silica gel column chromatography (hexane/EtOAc, v/v, 3:1) to give X3 as pale yellow solid (1050 mg, yield 91 %). ¹H NMR (d6-DMSO, 500 MHz, 298 K), δ (ppm): 7.51 (d, 4 H, J = 5.0 Hz), 7.48 (d, 4 H, J = 10.0 Hz), 7.44 (d, 4 H, J = 5.0 Hz), 7.06 (d, 4 H, J = 15.0 Hz), 7.01 (d, 8 H, J = 10.0 Hz), 6.99-6.94(m, 12) H), 6.91 (d, 4 H, J = 10.0 Hz), 6.80 (d, 4 H, J = 10.0 Hz), 3.75 (s, 6 H), 3.73 (s, 12 H); ¹³C NMR (C_6D_6 , 500 MHz, 298 K), δ (ppm): 156.93, 156.49, 148.35, 147.57, 147.33, 141.64, 141.14, 135.22, 134.87, 133.68, 128.35, 127.96, 127.76, 127.67, 126.90, 123.89, 121.88, 115.30, 115.19, 55.05.TOF-MS: Positive ion: m/z=1156.4905 [M+H]+, calculated 1156.4982.

Figure S2. ¹³C NMR (C₆D₆) spectrum of X3

Figure S4. Cyclic voltammograms of X3 and Spiro-OMeTAD vs. Ag/AgNO₃ electrode.

Table S1. Summary of the electrochemical and molecular weight of the HTMs used in this study.

HTMs	E _{ox} (V) ^[a] vs NHE	HOMO (eV) ^[b]	LUMO (eV)	Egap (eV)	Molecular Weight
X3	0.77	-5.24	-2.32	2.92	1155.4
Spiro-OMeTAD	0.63	-5.10	-2.20	2.90	1225.4

[a] Measured in a dichloromethane solution containing 0.1 M of tetrabutylammoniun hexafluorophosphate, n-Bu₄NPF₆ in a three-electrode cell, where the Ag/AgNO₃ electrode (acetonitrile as solvent) was used as the reference electrode, glassy carbon disk as the working electrode and platinum wire as the counter electrode. Scan Rates: 50 mV/s. Each measurement was calibrated with Fc. $E_{1/2}^{Fc} = 0.20$ V. [b] HOMO= $-5.1 - (E_{1/2} - E_{1/2}^{Fc})^{[3]}$, LUMO = HOMO $- E_{gap}$

Device Fabrication^[4]

Fluorine-doped tin-oxide (FTO) coated glass substrates were patterned by etching with zinc powder and 2 M hydrochloric acid. A compact TiO₂ blocking layer was first deposited onto the surface of a pre-cleaned

FTO substrate by spray pyrolysis on a hotplate at 500 $^{\circ}$ using an airbrush. The solution used in the spray pyrolysis was 0.2 M Ti-isopropoxide, 2 M acetylacetone in isopropanol. 10 spray cycles were used as standard parameter. Nanoporous TiO₂ films were coated on the compact TiO₂ layer by screen-printing a colloidal TiO₂ paste (Dyesol DSL 18NR-T). The thickness of the film is ca. 2.0 µm, as measured with a DekTak profilometer. After sintering the TiO₂ film on a hotplate at 500 $^{\circ}$ for 30 min, the film was cooled to room temperature and immersed in 0.02 M aqueous TiCl₄ at 70 $^{\circ}$ for 30 min. The film was then rinsed by deionized water and then annealed on a hotplate at 500 $^{\circ}$ for 30 min. After cooling to 90 $^{\circ}$, the film was immersed for 2 h in 0.2 mM solution of LEG4 dissolved in tert-butanol and acetonitrile (1:1); then the sensitized electrodes were rinsed by ethanol and dried; Subsequently, the chlorobenzene solution to penetrate into the sensitized electrode for 30 s and then spin-coating for 30 s with 2000 rpm. After cells were left in the dark in air overnight, the 200 nm thick Ag back contact was deposited onto the organic semiconductor by thermal evaporation in a vacuum chamber (Leica EM MED020) with a base pressure of about 10⁻⁵ mbar, to complete the device fabrication.

Device Characterization

Current-Voltage characteristics were recorded by applying an external potential bias to the cell while recording the generated photocurrent with a Keithley model 2400 digital source meter. The light source was a 300 W collimated xenon lamp (Newport) calibrated with the light intensity to 100 mW•cm⁻² at AM 1.5 G solar light condition by a certified silicon solar cell (Fraunhofer ISE). IPCE spectra were recorded on a computer-controlled setup comprised of a xenon lamp (Spectral Products ASB-XE-175), a monochromator (Spectral Products CM110) and a potentiostat (EG&G PAR 273). The setup was calibrated with a certified silicon solar cell (Fraunhofer ISE) prior to measurements. All ssDSC samples were illuminated from the glass side with an aperture area of 0.20 cm² (0.4×0.5 cm²). The prepared ssDSC samples were masked during the measurement with an aperture area of 0.20 cm² (0.4×0.5 cm²) exposed under illumination. Electron lifetime was measured by the custom-made ''toolbox setup'' using a green-light-emitting diode (Luxeon K2 star 5 W, λ_{max} =530 nm) as light source to provide the base light intensity.

Figure S5. J-V curves with different concentrations of Li-TSFI for ssDSCs devices based on X3 and LEG4

Table S2.	Influence of	lithium salt o	n the photovo	ltaic performance	e parameters ^[a]
-----------	--------------	----------------	---------------	-------------------	-----------------------------

HTM	Li-TSFI	Jsc / mA cm ⁻²	Voc / V	FF	η (%)
X3 ^[b]	20 mM	9.40	0.92	0.62	5.3
	30 mM	9.70	0.90	0.66	5.8
	40 mM	9.85	0.88	0.60	5.1
	50 mM	8.80	0.82	0.48	3.5

[a] 2.0 μ m TiO₂ films and 100 mW•cm⁻² simulated AM 1.5 G solar light. [b] 90 mM **X3** doped with 200 mM t-BP.

Figure S6. J-V curves with different concentrations of Li-TSFI for ssDSCs devices based on Spiro-OMeTAD and LEG4

Table S3. Influence of lithium salt on the photovoltaic performance parameters ^[a]

HTM	Li-TSFI	Jsc / mA cm ⁻²	Voc / V	FF	η (%)
Spiro-OMeTAD ^[b]	10 mM	7.24	0.98	0.69	4.9

20 mM	8.90	0.94	0.65	5.4
30 mM	9.65	0.88	0.59	5.0

[a] 2.0 μ m TiO₂ films and 100 mW•cm⁻² simulated AM 1.5 G solar light. [b] 150 mM Spiro-OMeTAD doped with 200 mM t-BP.

Figure S7. J-V curves for ssDSCs devices based on HTM AS37, dye LEG4 and Z907.

Table S4. The photovoltaic performance parameters for ssDSCs devices based on HTM AS37, dye LEG4 and Z907^[a]

HTM	dyes	Jsc / mA cm ⁻²	Voc / V	FF	η (%)
AS37 ^[b]	LEG4	8.38	0.74	0.42	2.6
	Z907	5.10	0.65	0.43	1.4

[a] 2.0 μ m TiO₂ films and 100 mW•cm⁻² simulated AM 1.5 G solar light. [b] 304 mM doped with 18 mM Li-TSFI, 95 mM t-BP and 0.36 mol % tris(4-bromophenyl)aminium hexachloroantimonate (TBPA). ^[5]

Figure S8. The schematic drawing of the situation of different HTMs on LEG4-sensitized TiO₂ surface.

Figure S9. UV-Vis absorption spectra of HTMs and partly oxidized HTMs.

Figure S10. The J-V curves and photovoltaic data (inset) of fresh and aged (1 month, dark storage) LEG4 ssDSCs based on X3 *References*

- [1] Y. J. Chang, T. J. Chow, Tetrahedron 2009, 65, 9626-9632.
- [2] S. Thayumanavan, S. Barlow, S. R. Marder, Chemistry of Materials 1997, 9, 3231-3235
- [3] C. M. Cardona, W. Li, A. E. Kaifer, D. Stockdale, G. C. Bazan, Advanced Materials 2011, 23, 2367-2371
- [4] L. Yang, U. B. Cappel, E. L. Unger, M. Karlsson, K. M. Karlsson, E. Gabrielsson, L. Sun, G. Boschloo,
 A. Hagfeldt, E. M. Johansson, Physical chemistry chemical physics : PCCP 2012, 14, 779-789
- [5] T. Leijtens, I. K. Ding, T. Giovenzana, J. T. Bloking, M. D. McGehee, A. Sellinger, ACS Nano 2012, 6, 1455-1462