Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A This journal is © The Royal Society of Chemistry 2013

## **Electronic Supplementary Information for**

## A SiO<sub>x</sub>/C@RGO three dimensional nanocomposite as a high

## energy anode material for lithium-ion batteries †

Chenfeng Guo, Dianlong Wang\*, Tiefeng Liu, Junsheng Zhu and Xiaoshi Lang

School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, China. Fax: +86 451 86413721; Tel: +86 451 86413751

\* To whom correspondence should be addressed. E-mail: wangdianlonghit@163.com, chenfeng1984hit@aliyun.com







**Fig. S2** FESEM of the SiO<sub>x</sub>/C NPs.

15

5

5

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A This journal is © The Royal Society of Chemistry 2013



Fig. S3 Cross-section view FESEM images of SiO<sub>x</sub>/C@RGO at different magnification.

5

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A This journal is © The Royal Society of Chemistry 2013







Fig. S5 BET isothermal profile of SiO<sub>x</sub>/C@RGO NCPs.



**Fig. S6** Superior cycle stability of SiO<sub>x</sub>/C@RGO NCPs in the long-run up to 400 cycles under a current density of 100 mA g-1. (Red: discharge capacity; Black: charge capacity; blue: coulombic efficiency)