Supporting Information

Low Band Gap Dithenogermolodithiophene Copolymers with Tunable Acceptors and Side-chains for Organic Solar Cells

Hongliang Zhong,^{*a*} Zhe Li,^{*a*} Ester Buchaca-Domingo,^{*b*} Stephan Rossbauer,^{*c*} Scott E. Watkins,^{*d*} Natalie Stingelin,^{*b*} Thomas D. Anthopoulos,^{*c*} and Martin Heeney^{**a*}

^a Dept. Chemistry and Centre for Plastic Electronics, Imperial College London, London, SW7 2AZ, U.K. E-mail: m.heeney@imperial.ac.uk

^b Dept. Materials and Centre for Plastic Electronics, Imperial College London, London, SW7 2AZ, U.K.

^c Dept. Physics and Centre for Plastic Electronics, Imperial College London, London, SW7 2AZ, U.K.

^d CSIRO, Molecular and Health Technologies, VIC 3169, Australia

Figure S1. DSC curves of polymers.

Figure S2. ¹H NMR spectrum of compound **2b** in CDCl₃ at room temperature.

Figure S3. ¹H NMR spectrum of compound **3b** in CDCl₃ at room temperature.

Figure S4. ¹H NMR spectrum of compound **4b** in CDCl₃ at room temperature.

Figure S5. ¹H NMR spectrum of pDTTG-BT in d4-tetrachloroethane at 130 °C.

Figure S6. ¹H NMR spectrum of pDTTG-DPP in d4-tetrachloroethane at 130 °C.

Figure S7. ¹H NMR spectrum of pDTTGL-BT in d4-tetrachloroethane at 130 °C.

Figure S8. ¹H NMR spectrum of pDTTGL-TPD in d4-tetrachloroethane at 130 °C.

Figure S9. ¹H NMR spectrum of pDTTGL-DPP in d4-tetrachloroethane at 130 °C.