## **Supporting Information**

## Stiff metal-organic framework/polyacrylonitrile hollow fiber composite membranes with high gas permeability

Wanbin Li,<sup>*a*</sup> Zhihong Yang,<sup>*a*</sup> Guoliang Zhang,<sup>*a*\*</sup> Zheng Fan,<sup>*a*</sup> Qin Meng,<sup>*b*\*</sup>

Chong Shen<sup>b</sup> and Congjie Gao<sup>a</sup>



Fig. S1. The experimental setup for both single and mixed gas permeation. (1) Feed gas cylinder,
(2) mass flow controller, (3) non-return valve, (4) gas mixer, (5) shut-down valve, (6) pressure
gauge, (7) back pressure regulator, (8) permeation cell, (9) gas chromatograph, (10) soap bubble
film flow meter, (11) exhaust head.



**Fig. S2.** SEM images of inner and outer surface of the PAN hollow fiber: (a), (b) inner and outer surface of the original PAN hollow fiber; (c), (d) inner and outer surface of the hydrolyzed PAN hollow fiber.



Fig. S3. The low and high magnification SEM images of  $Cu_3(BTC)_2$  membrane supported by original PAN hollow fiber.



Fig. S4. SEM images of the  $Cu_3(BTC)_2$  membrane supported by ceramic substrate: (a) outer surface, (b)cross-section.



**Fig. S5.** EDS spectra of the PAN hollow fiber substrates with fixed copper ion; (a), (b), (c), (d) the substrates hydrolyzed by NaOH for 15min, 60min, 120min and 60min follow by acidized with hydrochloric acid.

|          | H <sub>2</sub> permeance                                                | CO <sub>2</sub> permeance    |                         |  |
|----------|-------------------------------------------------------------------------|------------------------------|-------------------------|--|
| Membrane | $\times 10^{-5} \text{ mol/}(\text{m}^2 \cdot \text{s} \cdot \text{Pa}$ | ×10 <sup>-5</sup>            | Ideal separation factor |  |
|          | )                                                                       | $mol/(m^2 \cdot s \cdot Pa)$ |                         |  |
| M1       | 0.347                                                                   | 0.064                        | 5.42                    |  |
| M2       | 9.63                                                                    | 1.72                         | 5.60                    |  |
| M3       | 53.6                                                                    | 15.6                         | 3.44                    |  |
| M4       | 0.922                                                                   | 0.211                        | 4.38                    |  |
| M5       | 0.038                                                                   | 0.006                        | 5.50                    |  |

Tab. S1. The effect of modified conditions on separation performance.

Notes: M1, M2, M3, Cu<sub>3</sub>(BTC)<sub>2</sub>/PAN supported by the PAN hollow fiber substrate hydrolyzed by NaOH for 15min, 60min,120min, respectively; M4, Cu<sub>3</sub>(BTC)<sub>2</sub>/PAN supported by the PAN hollow fiber substrate hydrolyzed for 60min and then acidized by hydrochloric acid; M5, Cu<sub>3</sub>(BTC)<sub>2</sub> membrane supported by ceramic substrate.

**Tab. S2.** Mixture gas permeances and separation factors of the  $Cu_3(BTC)_2/PAN$  HFM at different retentate flux and pressure.

| Retentate flow |                             | Permeate flow Per |                                                                    | neance | ,              |            |
|----------------|-----------------------------|-------------------|--------------------------------------------------------------------|--------|----------------|------------|
| rate           | rate Pressure rate (ml/min) |                   | $(10^{-5} \text{mol}/(\text{m}^2 \cdot \text{s} \cdot \text{Pa}))$ |        | <i>Ун2/Усо</i> | Separation |
| (ml/min)       |                             |                   | $H_2$                                                              | $CO_2$ | 2              | factor     |
|                | 0.05                        | 94.07             | 6.46                                                               | 1.18   | 5.46           | 10.98      |
|                | 0.1                         | 164.84            | 5.3                                                                | 1.39   | 3.82           | 10.94      |
| 200            | 0.15                        | 272.73            | 4.89                                                               | 1.73   | 2.82           | 9.91       |
|                | 0.2                         | 361.26            | 4.86                                                               | 2.47   | 1.97           | 7.74       |
|                | 0.25                        | 469.36            | 4.81                                                               | 2.81   | 1.71           | 7.21       |
| 458            | 0.05                        | 99.64             | 6.85                                                               | 1.25   | 5.50           | 7.34       |
|                | 0.1                         | 183.39            | 6.03                                                               | 1.42   | 4.25           | 7.08       |
|                | 0.15                        | 291.38            | 6.02                                                               | 1.86   | 3.24           | 6.58       |
|                | 0.2                         | 373.44            | 5.56                                                               | 2.02   | 2.75           | 6.03       |
|                | 0.25                        | 484.52            | 5.49                                                               | 2.38   | 2.30           | 5.85       |
|                | 0.05                        | 101.22            | 7.05                                                               | 1.17   | 6.01           | 7.14       |
|                | 0.1                         | 191.59            | 6.52                                                               | 1.26   | 5.16           | 7.05       |
| 847            | 0.15                        | 298.63            | 6.51                                                               | 1.58   | 4.13           | 6.29       |
|                | 0.2                         | 387.10            | 6.11                                                               | 1.75   | 3.48           | 5.83       |
|                | 0.25                        | 497.24            | 6.08                                                               | 2.00   | 3.04           | 5.68       |

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A This journal is The Royal Society of Chemistry 2013



**Fig. S6.** Mixture gas permeances and separation factor of  $Cu_3(BTC)_2/PAN$  HFM as function of test time at 0.1 MPa and 20 °C with retentate side flow rate of 847 ml/min.

| Membrane                           | Reference | T(°C) | Pore<br>size<br>(nm) | Separation<br>factor | $H_2$ permeance<br>(molm <sup>-2</sup> s <sup>-1</sup> Pa <sup>-1</sup> ) |
|------------------------------------|-----------|-------|----------------------|----------------------|---------------------------------------------------------------------------|
| zeolite P/NaX                      | 1S        | 16    | 0.74                 | 4.50                 | 1.40×10 <sup>-7</sup>                                                     |
| silicate-1                         | 28        | 25    | 0.55                 | 1.84                 | 7.90×10 <sup>-6</sup>                                                     |
| SAPO-34                            | 38        | 27    | 0.38                 | 1.30                 | 3.00×10 <sup>-8</sup>                                                     |
| Matrix AlPO <sub>4</sub>           | 4S        | 35    | -                    | 9.70                 | 1.10×10 <sup>-7</sup>                                                     |
| LTA AlPO <sub>4</sub>              | 58        | 20    | 0.40                 | 7.60                 | 2.10×10 <sup>-7</sup>                                                     |
| SSZ-13                             | 6S        | 25    | 0.38                 | 1.60                 | 3.10×10 <sup>-7</sup>                                                     |
| MFI                                | 78        | 450   | 0.56                 | 17.5                 | 1.86×10 <sup>-7</sup>                                                     |
| MMM ZIF-8                          | 7b        | 180   | -                    | 7.70                 | 6.77×10 <sup>-8</sup>                                                     |
| ZIF-7                              | 8S        | 200   | 0.29                 | 6.48                 | 7.71×10 <sup>-8</sup>                                                     |
| ZIF-22                             | 14a       | 50    | 0.30                 | 7.20                 | 1.70×10 <sup>-7</sup>                                                     |
| ZIF-78                             | 9S        | 25    | 0.38                 | 9.50                 | 0.97×10 <sup>-7</sup>                                                     |
| ZIF-90                             | 10S       | 200   | 0.35                 | 7.30                 | 2.37×10 <sup>-7</sup>                                                     |
| ZIF-95                             | 14d       | 25    | 0.37                 | 8.48                 | 5.05×10 <sup>-7</sup>                                                     |
| NH2-MIL-53                         | 12c       | 15    | 0.75                 | 30.9                 | 1.98×10 <sup>-6</sup>                                                     |
| Cu <sub>3</sub> (BTC) <sub>2</sub> | 12a       | 40    | 0.90                 | 13.5                 | 4.10×10 <sup>-8</sup>                                                     |
| Cu <sub>3</sub> (BTC) <sub>2</sub> | 5b        | 25    | 0.90                 | 4.60                 | 6.74×10 <sup>-7</sup>                                                     |
| Cu <sub>3</sub> (BTC) <sub>2</sub> | 5c        | 25    | 0.90                 | 6.84                 | 1.06×10 <sup>-6</sup>                                                     |
|                                    | This work | 20    | 0.90                 | 7.05                 | 6.52×10 <sup>-5</sup>                                                     |
| $Cu_3(BTC)_2$                      |           | 40    | 0.90                 | 11.0                 | 6.45×10 <sup>-5</sup>                                                     |

**Tab. S3.** Comparison of mixture gas separation performance of the  $Cu_3(BTC)_2/PAN$  HFM in this study with other membranes in the literature for equimolar  $H_2/CO_2$  mixture.

## **Supporting References**

- (1S) X. Yin, G. Zhu, Z. Wang, N. Yue, S. Qiu, Microporous Mesoporous Mater., 2007, 105, 156.
- (2S) C. Algieri, P. Bernardo, G. Golemme, G. Barbieri, E. Drioli, J. Membr. Sci., 2003, 222, 181.
- (3S) J. C. Poshusta, V. A. Tuan, J. L. Falconer, R. D. Noble, Ind. Eng. Chem. Res., 1998, 37, 3924.
- (4S) G. Guan, T. Tanaka, K. Kusakabe, K. Sotowa, S. Morooka, J. Membr. Sci., 2003, 214, 191.
- (5S) A. Huang, F. Liang, F. Steinbach, T. M. Gesing, J. Caro, J. Am. Chem. Soc., 2010, 132, 2140.
- (6S) H. Kalipcilar, T. C. Bowen, R. D. Noble, J. L. Falconer, Chem. Mater., 2002, 14, 3458.
- (7S) X. Gu, Z. Tang, J. Dong, Microporous Mesoporous Mater., 2008, 111, 441.
- (8S) Y. Li, F. Liang, H. Bux, A. Feldhoff, W. Yang, J. Caro, Angew. Chem. Int. Ed., 2010, 49, 548;
- (9S) X. Dong, K. Huang, S. Liu, R. Ren, W. Jin, Y. S. Lin, J. Mater. Chem., 2012, 22, 19222.
- (10S) A. Huang, W. Dou, J. Caro, J. Am. Chem. Soc., 2010, 132, 15562.