Supporting Information for

CdTe nanoflake arrays on conductive substrate: template synthesis and photoresponse property

Zi-Ling Zhu^a, Lan Cui^a, Tao Ling^a, Shi-Zhang Qiao^b*, and Xi-Wen Du^a*

1. Characterization of the raw Cd nanoflakes

Figure S1. TEM image of a big Cd nanoflake.

2. Characterization of the products obtained by different heating treatments

Figure S2. (a) XRD pattern and (b) SEM image of CdTe nanoflakes obtained by PIH at 420 °C for 5 min.

Figure S3. XRD pattern of the product obtained by PIH at 420 °C but without KOH pretreatment.

Figure S4. SEM image of the product obtained by NH at 420 °C.

Figure S5. SEM image of the product obtained by PIH at 350 $^{\circ}$ C .

Figure S6. Characterizations of the product obtained by PIH at 450 °C. (a) Top-down, (b) cross-section , and (c) high magnification SEM images, (d) TEM image, inset is the SAED pattern.

3. Temperature change data in NH and PIH processes

Normal Heating			Put-in Heating		
Time (min)	Te powder	Cd NFAs	Time	Te powder	Cd NFAs
	(°C)	(°C)	(min)	(°C)	(°C)
0	20	20	0	20	20
3	51	35	0.5	79	60
6	81	52	1	160	115
9	112	66	1.5	234	168
12	141	86	2	302	219
15	172	110	2.5	366	269
18	201	139	3	398	297
21	233	165	3.5	418	325
24	262	194	4	424	338
27	292	228	4.5	422	344
30	323	259	5	421	348
33	352	286	5.5	420	350
36	383	310	6	420	350
39	412	332	6.5	420	350
42	419	346	7	420	350
45	420	350			
48	420	350			
51	420	350			
54	420	350			

Table S1 : Temperature changes in NH and PIH processes measured by thermocouple

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2013

4. Optical properties of CdTe nanoflake arrays.

Figure S7. (a) Absorption spectra of CdTe film and NFAs obtained by PIH at 350 and 420 °C, respectively. (b) $(\alpha hv)^2$ -hv plot according to the absorption spectrum of NFAs in (a), extrapolation of the linear part till its intersection with the hv-axis gives the value band gap. (c) PL spectrum of the CdTe NFAs on FTO substrate.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A This journal is The Royal Society of Chemistry 2013

5. Photoresponse properties of porous CdTe arrays on FTO substrate.

Figure S8. Photoresponse of porous CdTe arrays on FTO substrate. (a) I-V curves measured in dark and under white light illumination, respectively. (b) On-off cycles at a constant bias of -1.0 V.