Supporting information

In situ synthesis of well crystallized rhodium sulfide/carbon composite nanospheres as catalyst for hydrochloric acid electrolysis

Yanjuan Li^a, Nan Li^{a, *}, Kazumichi Yanagisawa^b, Xiang Ding^c, Xiaotian Li^a

^aCollege of Material Science and Engineering, Key Laboratory of Automobile Materials of Ministry of Education, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China.

^bResearch Laboratory of Hydrothermal Chemistry, Kochi University, Kochi 780-8520, Japan

^cAnalysis and Testing Center, General Research Institute for Non-ferrous Metals, No.2 Xin Jie Kou Wai Str., Beijing, 100088, P. R. China

*Corresponding author. Phone: +86 43185094856. Fax: +86 43185094856.

E-mail address: lin@jlu.edu.cn

Fig. S1 EDX pattern of Rh_xS_y/C nanocomposite synthesized in i-propanol with S/Rh

= 2.25.

Fig. S2 FTIR spectra of pure KBr (a) and rhodium sulfide/carbon composites synthesized in ethanol (b), i-propanol (c), i-amyl alcohol (d), n-butanol (e) and n-propanol (f).

Fig. S3 TEM images of Rh_xS_y/C nanocomposite synthesized in i-propanol after refluxing in concentrated HCl (a) and aqua regia (b) for 12h.

Fig. S4 SEM image of Rh_xS_y/C nanocomposite synthesized in i-propanol after heat-treatment at 600 °C in Ar.

Fig. S5 Representative SEM images of Rh_xS_y/C nanocomposites synthesized in various alcohols. (a-e) are ethanol, n-propanol, n-butanol, i-butanol, and i-amyl alcohol, respectively.