Electronic Supplementary Information

Heterojunctions in g-C₃N₄ and TiO₂(B) Nanofibres with Exposed (001) Plane and Enhanced Visible-Light Photoactivity

Lin Zhang,^a Dengwei Jing^b, Xilin She, ^a Hongwei Liu,^c Dongjiang Yang, ^{a,c,*} Yun Lu,^d Jian Li,^d Zhanfeng Zheng,^{e,*} and Liejin Guo^b

NCLS calculation and rational selection between g-C₃N₄ and TiO₂ nanofibres

In view of crystallography, planar matching between the two involved phases must obey a basic rule that there are some planes roughly parallel to each other and sharing similar planar spacing. It is known that $g-C_3N_4$ is a graphite-type 2-dimensional six-fold symmetric layered material with lattice parameter of a = 1.42 nm. Near coincidence site lattice (NCSL) is a traditional and powerful crystallographic conception for phase transformations. NCSL is a super lattice at the interface between two adjacent phases and is the structure of the interface. The NCSL is two-dimensional periodic lattice wish a certain symmetry and a certain coincidence site multiplicity (Σ) which is inversely to interfacial energy.

Here, $TiO_2(B)$ and anatase are used for comparison. The crystal structures of $TiO_2(B)$, anatase and g-C₃N₄ are shown in Table S1. Based on our previous study [1,2], as shown in Figure S1, the exposal plane of $TiO_2(B)$ nanofibre is (001) and that of anatase is (100).

	Table S1 Crysta	l structures of	$TiO_2(B)$, anata	se and $g-C_3N_4$			
Phase	Bravias	Lattice parameters					
	lattice	a (nm)	b (nm)	c (nm)	Beta (°)		
$TiO_2(B)$	Monoclinic	1.192	0.374	0.651	107.29	he	
anatase	Tetragonal	0.374	0.374	0.953			
$g-C_3N_4$	Hexagonal	1.420				NC	

SL lattice of two phases can be generated as follows. As shown in Scheme S1A, the unit cell of phase 1 (2) in orthogonal coordinates has the two basic vectors, where phase 1 is TiO2(B) or Anatase, and phase 2 is g-C3N4.

Phase 1: $R_1 = [a,0], R_2 = [0,b]$

Phase 2: $R_1' = [c,0], R_2' = [0,d]$

The schematic illustration of an arbitrary superlattice of phase 1 (2) is displayed in Scheme S1B.

Phase 1:
$$V_1 = mR_1 + nR_2 = [ma, nb], V_2 = [nb, -ma], \text{ and } V_2 \perp V_1$$

Phase 2: $V_1' = pV_1' + qV_2' = [pc, qd], V_2' = [qd, -pc], \text{ and } V_2' \perp V_1'$

If phase 2 is able to superimpose over the super lattice of phase 1, the superlattice of phase 2 has to rotate a special angle θ and the rotated phase 2 has two basic vectors:

Phase 2:
$$V_1'' = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos \end{pmatrix} V_1' = \begin{bmatrix} pc\cos\theta - qd\sin\theta \\ pc\sin\theta + qd\cos\theta \end{bmatrix}$$
,
 $V_2'' = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} V_2' = \begin{bmatrix} pc\sin\theta + qd\cos\theta \\ qd\sin\theta - pc\cos\theta \end{bmatrix}$, and $V_2'' \perp V_1''$

It could be deduced that since both superlattices are overlapped,

$$V_1 / / V_1''; V_2 / / V_2''$$
$$|V_1| = |V_1''; |V_2| = |V_2''|$$

From $V_1//V_1''$, we can get equation (1)

$$\begin{cases} pc\cos\theta - qd\sin\theta = ma\\ pc\sin\theta + qd\cos\theta = nb \end{cases} \text{ and } tg\theta = \frac{npbc - mqad}{mpac + nqbd} \tag{1}$$

From $V_1 \perp V_1^{"}$, we can get equation (2)

$$(ma)^{2} + (nb)^{2} = (pc\cos\theta - qd\sin\theta)^{2} + (pc\sin\theta + qd\cos\theta)^{2}$$
 and
 $m^{2}a^{2} + n^{2}b^{2} = p^{2}c^{2} + q^{2}d^{2}$ (2)

The inverse of coincidence site multiplicity (Σ) is the ratio of volume between unit cell and superlattice

$$\Sigma = \frac{V_{\sup er-cell}}{V_{unit-cell}} = \frac{\sqrt{(ma)^2 + (nb)^2}\sqrt{(nb)^2 + (-ma)^2}}{ab} = \frac{(ma)^2 + (nb)^2}{ab}$$
(3)

The equations (1)-(3) are the basic equations for NCSL lattice. It can be used for $g-C_3N_4/TiO_2(B)$ and anatase/g-C₃N₄ systems. It is noticed that (001) plane of TiO₂(B) and (100) plane of anatase are both 2-fold symmetry while (001) plane of $g-C_3N_4$ is 6-fold symmetry. So the unit cell for $g-C_3N_4$ needs careful choosing so that the cell shows 2-fold symmetry. Thus, it can be chosen $R_1'=[2\overline{110}]=[c,0]$, $R_2'=[0\overline{10}]=[0,\sqrt{3}c]$. The detailed parameters for calculation NCSL are shown in Table S2.

	Unit cell		Unit cell		NCSL							
	Cell	Cell	Cel	Cell	Ce	ell	Ce	11			TE	
System	1	2	11	2	1		2		$\mathbf{\Sigma}$	Rotation	М	Diffe
	р	р	D /	D /	100			~	Z	Angle	res	Diffe.
	K ₁	K ₂	K ₁	K ₂	m	п	р	q			ult	
$TiO_2(B)/g-$ C_3N_4	(a,0)	(0,b)	(c,0)	(0,d)	2	2	0	1	7	$tg\theta = a/a$	17. 4°	0.0°
										θ=17.4°		
Anatase/g- C ₃ N ₄	(<i>a</i> ,0)	(0,b)	(c,0)	(0,d)	0	3	1	1	23	$tg\theta = c/a$ $\theta = 30^{\circ}$	N/ A	N/A

Table S2 NCSL calculation for systems $TiO_2(B)/g-C_3N_4$ and Anatase/g-C₃N₄

Remarks: a=0.374 nm, b=1.192 nm, c=1.42 nm, d=c $\sqrt{3}$ =2.46nm.

Obviously, the coincidence site density $1/\Sigma$ of TiO₂(B)/g-C₃N₄ system is much lower than that of anatase/g-C₃N₄ system. It is expected that the TiO₂(B)/g-C₃N₄ system is more favorite and stable than the anatase/g-C₃N₄ system. It is also predicted a rotation angle θ =17.4° between TiO₂(B) and g-C₃N₄. This is the induced angle between [010]TiO₂(B) and [2-1-10] g-C₃N₄. That means there must be a pair of planes parallel and sharing same planar spacing. The departure angle of plane (110) and (020) is exactly 17.4°. The planar spacing of plane (110) is 0.355nm, the same as (22-40) plane. Scheme S1C shows such prediction of orientation relationship between TiO₂(B) and g-C₃N₄. This is well coincident with TEM experimental observation.

Scheme S1. (A) the unit cell of phase 1 (2) in orthogonal coordinates. (B) an arbitrary superlattice of phase 1 (2). (C) prediction of orientation relationship between $TiO_2(B)$ and g-C₃N₄.

Fig. S1 TEM image of $TiO_2(B)$ with exposed (001) plane (A,B,C,D) and anatase fibers with exposed (100) plane (E,F).

Fig. S2 (A) Photocatalytic degradation of SRB ($C_0 = 25 \mu \text{mol } \text{L}^{-1}$) under UV light irradiation. (B) Average reaction rate constants *k* for photodegradation on SRB over g-C₃N₄/TiO₂(anatase) samples with different mass rations.

Fig. S3 (A) Photocatalytic degradation of SRB ($C_0 = 25 \mu \text{mol } \text{L}^{-1}$) under UV light irradiation. (B) Average reaction rate constants *k* for photodegradation on SRB over g-C₃N₄/TiO₂(B) samples with different mass ratios.

Fig. S4 SEM of the $g-C_3N_4$ after sonication

Fig. S5 Room -temperature photoluminescence spectra of the $g-C_3N_4$, TiO₂(B) and $g-C_3N_4$ /TiO₂(B) samples under 324 nm excitation.

References

- D. J. Yang, J. Zhao, H. W. Liu, Z. F. Zheng, M. O. Adebajo, H. X. Wang, X. T. Liu,
 H. J. Zhang, J. C. Zhao, J. Bell and H. Y. Zhu, *Chem. Eur. J.*, 2013.
- D. J. Yang, H. W. Liu, Z. F. Zheng, Y. Yuan, J. C. Zhao, E. R. Waclawik, X. B. Ke and H. Y. Zhu, *J. Am. Chem. Soc.*, 2009, **131**, 17885.