Supporting information

Table of contents

- 1) Microscopic study of the asymmetric membrane
- 2) Gas permeation study of the porous support
- 3) Additional O₂ permeation results
- 4) Stability test in CO₂

1) Microscopic study of the asymmetric membranes

A microscopic study of the asymmetric membrane developed by freeze-casting and screen printing and developed by Jülich has been realized to get information about the microstructure and the organisation of the porosity. The Scanning electron Microscopic used is a Jeol Model JSM-5410.

a) Freeze-cast membrane

Figure S1. Microscopic study of the asymmetric membrane. (a) Asymmetric membrane: Porous support + dense top-layer, scale bar 400 μ m; (b) surface of the dense top layer, scale bar 30 μ m; (c) cross-section of the dense top-layer, scale bar 80 μ m; (d) cross section of the non-oriented random porosity, scale bar 50 μ m; (e) cross section of the hierarchically-oriented porosity, scale bar 10 μ m; (f) surface of the hierarchically-oriented porosity, bottom of the asymmetric membrane, scale bar 60 μ m

b) Asymmetric membrane developed by Jülich

Figure S2. Cross section of the asymmetric membrane developed by Forschungszentrum Jülich, scale bar 100 μ m

2) Gas permeation study of the porous support

This study is carried out using porous support without any top layer. For this purpose, the freeze-cast support was sintered without coating a top layer and subsequently the non-oriented porous volume was removed by grinding. The pressure drop of the porous support prepared by freeze-casting has been evaluated at high temperatures using the same set-up as the permeation test and using a ceramic cement to seal the outer support area to the quartz tube. Argon, helium and nitrogen were and the pressure drop ΔP across the membrane was recorded as a function of the inlet gas flow rate and temperature.

Figure S3. ΔP across the porous support as a function of the gas flow rate at (top) 800 °C and 900 °C (down) for a 1.5 mm –thick tape-cast support made of LSCF.

Temperature	a factor	b factor	$\prod_{v'} \prod_k *$	a factor	b factor	$\prod_{v'} \prod_k *$
(°C)	(mol.Pa ⁻² .s ⁻¹ .m ⁻²)	(molPa ⁻¹ .s ⁻¹ .m ⁻²)	%	(mol.Pa ⁻² .s ⁻¹ .m ⁻²)	(molPa ⁻¹ .s ⁻¹ .m ⁻²)	%
	freeze-cast	freeze-cast	freeze-cast	tape-cast	tape-cast	tape-cast
600	1,8.10-9	8,8.10-4	2%	3,0.10-10	$1.0 \cdot 10^{-4}$	10%
700	2,0.10-9	9,2.10-4	2%	$3.7 \cdot 10^{-10}$	$1.2 \cdot 10^{-4}$	12%
800	9.6.10 ⁻⁹	0,010	6%	$5.0 \cdot 10^{-10}$	$1.5 \cdot 10^{-4}$	13%
	- ,	- ,				
900	$1.5.10^{-8}$	0.016	4%	nd	nd	Nd
,		-,	.,.			

Table S1. Results of the linear fit Π =a. ΔP +b of the Ar single gas permeance as a function of the ΔP for the freeze-cast and tape-cast supports. * Note: determined at Q_{Ar} = 250 ml·min⁻¹

The argon permeance can be written by the following equation:

П=а. ∆Р +b

Where a and b are the viscous flow (*Poiseuille*) Π_v and the *Knudsen* flow Π_k contributions, respectively ¹. The fitting of the four permeance measurements are summarized in the Table S1 for both porous supports, where both a and b factors are given. Irrespective of the temperature, the *Knudsen* flow appears to be the most important mechanism in the gas.

Argon, helium and nitrogen were used as gas to measure the pressure drop ΔP across the membrane as a function of the inlet flow. As a comparison, the same experiment was performed with the support of the asymmetric membrane prepared by tape-casting

¹ R.J.R. Uhlhorn, K. Keizer, A. J. Burgraaf, J. Memb. Sci. 46 (1995) 2131

Figure S4. Normalized pressure drop ΔP across two porous support (filled symbol: support elaborated by freeze-casting, empty symbol: support of the asymmetric membrane developed by tape-casting) as a function of the inlet flux and for three different gases at 800°C

Figure S4 represents the normalized ΔP across the porous support elaborated by freezecasting and across the support of the asymmetric membrane developed by Jülich as a function of the inlet flux and at 800°C. Whatever the gas and the inlet flux, the porous support elaborated by freeze-casting presents a lower pressure drop than the other support. For example, when N₂ is chosen as gas, the pressure drop of the freeze-cast support does not exceed 0.48 bar.mm⁻¹ for an inlet flow of 400mL.min⁻¹ while it already reaches 0.89 bar.mm⁻¹ for an inlet flow of only 50 mL.min⁻¹ with the other support.

3) Additional O₂ permeation results

Figure S5 presents the evolution of the permeation flux as a function of temperature and the oxygen partial pressure of the gas feed. The partial pressure was achieved by using different mixtures of N₂ and O₂. A very important improvement in the flux is achieved at both high and low operating temperatures. Indeed, at 1000 °C a peak flux of ~18 ml·min⁻¹·cm⁻² is observed when using pure O₂. On the other hand, a relatively higher improvement is achieved at 600 °C, reaching a flux of ~2 ml·min⁻¹·cm⁻² when using 75% O2 in the feed. Moreover, the strong changes in the apparent activation energies are in full agreement with previous observations using the tape-cast LSCF membrane ³³ and are related to the progressive change of the rate limiting steps as a function of the

oxygen partial pressure (and temperature).

Figure S5. Thermal evolution of the oxygen flux as a function of the oxygen partial pressure in the feed gas, made of mixture of O_2 and N_2 . The total feed pressure was slightly above the atmospheric.

Figure S6. Experimental setup of oxygen permeation test.

Figure S7. Thermal cycling (experimental permeation test) for the bare LSCF asymmetric tape-cast sample

Figure S8. (top) Thermogravimetric analysis of LSCF power in air and air with 5% CO₂ and (bottom) XRD patterns of LSCF samples quenched directly from 750°C in Air or pure CO₂ gas environment

<u>Experimental</u>: Thermogravimetry analysis was performed on a Mettler-Toledo StarE equipment in air with 5% CO₂ and using a heating ramp of 10 K/min. XRD measurements were carried out by a PANalytical X'Pert PRO diffractometer, using CuK $\alpha_{1,2}$ radiation and an X'Celerator detector in Bragg-Brentano geometry. XRD patterns were recorded in the 2 θ range from 20° to 90° and analyzed using X'Pert Highscore Plus software