Remarkable Photocurrent of P-type Dye-sensitized Solar Cell Achieved by Size Controlled CuGaO₂ Nanoplates

Zhen Xu,^a Dehua Xiong,^a Huan Wang,^a Wenjun Zhang,^a Xianwei Zeng,^a Liqun Ming, Wei Chen,^{*a} Xiaobao Xu,^a Jin Cui,^a Mingkui Wang,^{*a} Satvasheel Powar,^b Udo Bach,^b Yi-Bing Cheng^{ab}

^a Michael Grätzel Centre for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics and College of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China. Fax: 86 8779 3867; Tel: 86 8779 3867; E-mail: <u>wnlochenwei@hust.edu.cn</u> (prof. W. Chen); <u>mingkui.wang@hust.edu.cn</u> (prof. M.K. Wang)
^b Department of Materials Engineering, Monash University, Melbourne, Victoria, 3800, Australia

Fig. S1. Calculation on the BET surface area difference between two kinds of ideal hexagonal nanoplates, one with 150 nm diameter and 25 nm thickness, another one with 300 nm diameter and 50 nm thickness, the size of which are just corresponding to the nanoplates synthesized from 5 $^{\circ}$ C and 25 $^{\circ}$ C precursors respectively.

Fig. S2. XRD patterns of the intermediates obtained after hydrothermal treatment on (a) the 5 °C precursor and (b) the 50 °C precursor for 1 hour, 5 hours and 10 hours, respectively.

For the 5 °C precursor, it can be found a general phase transition from $Cu_2(OH)_3NO_3$, to CuO, subsequent to Cu_2O , and gradually to CuGaO₂ in the first several hours of hydrothermal synthesis. After 5 hours, the CuGaO₂ nanoplates begin to form. The thickness of CuGaO₂ nanoplates becomes thicker after 10 hours hydrothermal synthesis. Such processes can be judged from the peaks labeled by the red arrow owning to CuGaO₂. For the 50 °C precursor, it can be found that the phase transition is as follows: CuO to Cu₄O₃, and subsequent to Cu₂O. After 10 hours hydrothermal treatment, no CuGaO₂ nanoplates have formed. It might be due to that the preformed CuO excessively grows to too thick Cu₂O seeds, hindering the subsequent Ga³⁺ diffusion into the Cu₂O lattice. So, the phase transition from Cu₂O to CuGaO₂ has been retarded. It is obviously that, the Cu₂O seeds formation time is much shorter for the 5 °C precursor than that for the 50 °C precursor, which might be responsible for the different size control effect on Cu₂O and CuGaO₂ nanoplates.

Fig. S3. SEM images of the intermediates obtained after hydrothermal treatment on the 5 °C precursor for (a) 5 hours and (b) 10 hours, and the 50 °C precursor for (c) 5 hours and (d) 10 hours, respectively.

Obviously, the intermediates obtained from the 5 °C precursor are much smaller and more uniform than from the 50 °C precursor. From Fig. S3, it is known the Cu_2O and $CuGaO_2$ are both with the morphology of hexagonal nanoplates. The nanoplates in Fig. S3a are observed thinner than that in S3b.

Fig. S4. Pore size distributions of CuGaO₂ nanoplates films before and after mechanical press.