Electronic Supplementary Information

Carbon quantum dots/TiO₂ composites for efficient photocatalytic hydrogen evolution

Huijun Yu,^{*a,b*} Yufei Zhao,^{*a*} Chao Zhou,^{*a*} Lu Shang,^{*a*} Yong Peng,^{*a,b*} Yinhu Cao,^{*a*} Li-Zhu Wu,^{*a*} Chen-Ho Tung,^{*a*} and Tierui Zhang^{**a*}

^aKey Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and

Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.

^bUniversity of Chinese Academy of Sciences, Beijing, 100049, P. R. China.

*Corresponding author. E-mail: tierui@mail.ipc.ac.cn.

Fig. S1 The light spectrum of Xenon lamp.

Fig. S2 HRTEM images of CQDs/P25-1.5wt% (A), CQDs/P25-2.0wt% (B) and CQDs/P25-2.5 wt% (C).

Fig. S3 XRD pattern of CQDs/P25-1.5wt%.

Fig. S4 (A) Band gap estimation based on the Kubelka-Munk function for P25 and CQDs/P25 composites with different amount of CQDs; (B) Band gap estimation based on the Kubelka-Munk function for P25, CQDs, CQDs/P25-2.0wt% prepared by the hydrothermal method, and CQDs/P25-2.0wt% obtained by the physical adsorption (PA).

Fig. S5 The effect of amount of photocatalysts on the photocatalytic H_2 evolution rate over CQDs/P25-1.5wt% under UV-Vis irradiation in methanol aqueous solution ($V_{methanol}$: V_{water} =1:3).

Fig. S6 Photocatalytic H₂ evolution rates of pure P25 and CQDs/P25 composites with different amount of CQDs under UV-Vis light irradiation in pure water without methanol.

Fig. S7 Photocatalytic H₂ production activities of pure P25 and CQDs/P25 composites prepared by the hydrothermal method (HT) and the physical adsorption (PA) under (A) UV-Vis and (B) visible light (λ >450 nm) irradiation in methanol aqueous solution.

Fig. S8 BET measurements of P25, CQDs/P25-1.0wt% and CQDs/P25-2.0wt%. Inset: the pore size distribution of P25, CQDs/P25-1.0wt% and CQDs/P25-2.0wt%.

Fig. S9 Photoluminescence spectra of P25 and CQDs/P25 composites with different amount of CQDs under the excitation of 305 nm.

Sample	BET specific surface area (m ² g ⁻¹)	Average pore diameter (nm)	Pore volume (cm ³ g ⁻¹)
P25	59.5	15.2	0.259
CQDs/P25-1.0wt%	56.2	15.4	0.423
CQDs/P25-2.0wt%	54.8	15.2	0.451

Table S1 Surface anal	ysis data of pu	re P25, CO	Ds/P25-1.0wt%	and CODs/P25-2.0wt%
		, - 、		

It should be noted here that P25 and CQDs are not porous materials.