Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A This journal is O The Royal Society of Chemistry 2013

Electronic Supplementary Information

Mussel-Inspired Nitrogen Doped Graphene Nanosheets Supported Manganese Oxide Nanowires as Highly Efficient Electrocatalysts for Oxygen Reduction Reaction

Taemin Lee, Eun Kyung Jeon, and Byeong-Su Kim*

Interdisciplinary School of Green Energy and Department of Chemistry,

Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, Korea

E-mail: bskim19@unist.ac.kr

Fig. S1 Height-mode AFM image of the GO nanosheet with a corresponding line scan. The colloidal suspension of GO mainly comprises single-layer graphene nanosheets with a thickness of approximately 0.70 nm.

Fig. S2 UV/vis spectra of GO, pDopa and G/pDopa.

Electronic Supplementary Information

	Relative atomic contents (%)					
	С	0	N	Mn		
(1) GO	71.09	28.91				
(2) GO/pDopa	71.93	21.03	7.04			
(3) NG ₆₀₀	83.73	9.31	6.95			
(4) NG ₈₀₀	89.01	5.90	5.09			
(5) NG ₁₀₀₀	90.32	5.78	3.90			
(6) NG/MnO _{x (2:1)}	68.60	20.56	4.54	6.30		

Table S1. Relative atomic percentage of various catalysts prepared in this study.

Table S2. Deconvoluted high-resolution N 1s XPS configurations of various catalystsprepared in this study.

	G/pDopa	a		NG600		
N species	Peak position / eV	% N	N species	Peak position / eV	% N	
Pyridinic-N (N-5)	398.23	4.31	Pyridinic-N (N-5)	398.11	34.37	
Pyrrolic-N (N-6)	399.95	75.23	Pyrrolic-N (N-6)	399.92	42.36	
Graphitic-N (N-Q)	401.45	20.46	Graphitic-N (N-Q)	401.31	23.27	
NGaa			NG1000			
N species	Peak position / eV	% N	N species	Peak position / eV	% N	
Pyridinic-N (N-5)	398.10	27.50	Pyridinic-N (N-5)	398.10	30.27	
Pyrrolic-N (N-6)	400.25	35.21	Pyrrolic-N (N-6)	400.33	32.95	
Graphitic-N (N-Q)	401.21	37.29	Graphitic-N (N-Q)	401.32	36.77	
	NG/MnOx					
N species	Peak position / eV	% N				
Pyridinic-N (N-5)	398.13	28.12				
Pyrrolic-N (N-6)	400.28	47.39				
Graphitic-N (N-Q)	401.39	24.49				

Fig. S3 Linear sweep voltammogram of NG catalysts prepared from different pyrolysis temperature from 600 to 1000 $^{\circ}$ C with the corresponding K-L plot and electron transfer number.

Fig. S4 Thermogravimetric analysis (TGA) for NG/MnO_{*x*} hybrid catalysts. The samples were subjected to heating at a rate of 10 °C·min⁻¹ under air atmosphere.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2013

Fig. S5 (a-c) Linear sweep voltammogram and (d) polarization curves of NG/MnO_x hybrids with varied GO contents from 0.5 to 10 with respect to MnO_x precursor. (a) NG/MnO_{x (0.5:1)}. (b) NG/MnO_{x (2:1)} and (c) NG/MnO_{x (10:1)}. It was measured at O₂-saturated 0.10 M KOH aqueous solution with wide range of rotating rates from 900 to 3200 rpm. The inset images show the corresponding K–L plots. Theoretical slopes for n = 2 and 4 are also constructed for comparison.

Fig. S6. Linear sweep voltammogram of TRGO/MnO_{*x*} (2:1)</sub> catalyst with the corresponding K-L plot and electron transfer number. TRGO/MnO_{*x*} (2:1)</sub> catalyst was synthesized following the method described for NG/ MnO_{*x*} (2:1)</sub> except using TRGO₈₀₀.