Supporting Information

A High-Performance Electrocatalyst for Oxygen Reduction Based on Reduced Graphene Oxide Modified with Oxide Nanoparticles, Nitrogen Dopants, and Possible Metal-N-C Sites

Yan Xie,^a Huanqiao Li,^a Chizhou Tang,^b Shushuang Li,^a Jia Li,^a Yang Lv,^a Xuming Wei,^a and Yujiang Song^{*a}

Chemicals:Iron (III) chloride (FeCl₃) and cobalt (II) chloride hexahydrate (CoCl₂.6H₂O) were purchased from AcrosOrganics Chemical Reagent Co. 1,10-phenanthroline (phen), melamine, potassium permanganate (KMnO₄), phosphorus (V) oxide (P₂O₅), sodium nitrate (NaNO₃), sodium thiosulfate pentahydrate(Na₂S₂O₈.5H₂O), hydrogen peroxide (H₂O₂), sulphuric acid (H₂SO₄) were purchased from Sinopharm Chemical Reagent Co. (Shanghai, China). Graphite powder (99+%) was purchased from Alfa Aesar. VXC-72 was supplied by Cabot Corp. (USA) and carbon nanotubes (CNTs) were from Ningbo institute of materials technology & engineering, China. All aqueous solutions were prepared with ultrapure water (18.2 MΩ·cm at 25 °C) produced from a Millipore water system (Synergy® UV, France).

Synthesis of graphene oxide: Graphene oxide (GO) was synthesized from natural graphite flakes by a modified Hummers method.¹Graphite powder (3 g, 100 mesh) was placed into a mixture of concentrated H₂SO₄ (12 mL), Na₂S₂O₈·5H₂O (3.26 g) and P₂O₅ (2.5 g). The mixture was incubated at 80 °C for 4.5 h. Next, the mixture was cooled down to room temperature and diluted with 0.5 L of H₂O and left overnight. In the following, the mixture was filtered and washed using a 0.45 μ Mmillipore-filter to remove the residual acid. The product was dried under ambient condition. This pre-oxidized graphite was then subjected to oxidation by the following steps. The pretreated graphite powder was placed into concentrated H₂SO₄ (0 °C, 120 mL). Next, KMnO₄ (15 g) was added gradually under stirring and the temperature of the mixture was kept to be below 20 °C. Next, the mixture was stirred at 35 °C for 2 h, followed by the additional of 0.7 L H₂O. Shortly, 20 mL of 30% H₂O₂ was added to the mixture. The resulting brilliant-yellow mixture was filtered and washed with 10 wt% HCl aqueous solution (1 L) and then washed repeatedly with H₂O until the pH of the filtrate was neutral. The GO slurry was dried in a vacuum oven at 60 °C and purified by dialysis for one week.

Synthesis of Fe₃Co-rGO Electrocatalyst: Phen (105 mg) and melamine (66 mg) at 1:1 molar ratio were added to 100 mL of water in a round-bottom flask and the mixture was incubated at 80 °C. 10 mL of 41 mM FeCl₃ and 10 mL of 13 mM $CoCl_2 \cdot 6H_2O$ was mixed at Fe/Co molar ratio of about 3:1 and heated to 80 °C.100 mL of 2 mg/mL GO aqueous solution was prepared under sonication at 80 °C. In this case, the mass loading of transition metal salts on GO is 32 wt%.

Initially, the three stock solutions were mixed together and stirred for 30 min at 80 °C, followed by cooling down to room temperature in about 80 min to form dark-yellow precipitates. Next, 50 mL of 8 mg/mL NaBH₄ aqueous solution was added. The dark-yellow precipitates gradually turned into black, indicating the completion of the reduction of GO. The black precipitates were filtered, washed with water, and dried overnight at 65 °C. Next, the sample was heat-treated in argon (80 mL/min) at 800 °C with a heating rate of 4 °C min⁻¹ for 2 h. Finally, the heat-treated sample was leached in 0.5 M H₂SO₄ aqueous solution at 80 °C for 30 min to remove unstable species. Next, the product was repeatedly washed with water until the filtrate pH reached 7. Finally, the sample was dried again at 65 °C prior to being used for further measurements. Controlled experiments were carried out by varying one parameter each time while keep all the others the same, including phen/melamine molar ratio (phen alone, 1:0.75, 1:1, 0.75:1, melamine alone), support type (VXC-72, rGO, carbon nanotubes), Fe/Co molar ratio (Fe alone, 1:1, 3:1, 1:3, Co alone), and heating temperature (450, 650, 775, 800, 850, and 900 °C).

Electron Microscopy and X-ray Diffraction Studies: The X-ray diffraction (XRD) spectrum was recorded in transmission geometry with Cu K α radiation ($\lambda = 0.15432$ nm) in the range of 10-80° on Rigaku D/Max 2400 with 2 θ scan mode at a scanning rate of 5° min⁻¹. XPS (Thermo ESCALAB 250Xi), SEM (HITACHI S5500, 30 KeV), TEM (FEI Tecnai G2 Spirit, 120 KeV), HRTEM and HAADF STEM (FEI Tecnai G2 F30 S-Twin, 300 KeV) were performed on obtained electrocatalysts. The samples for electron microscopy analysis were prepared by adding drops of colloidal suspensions onto a standard copper grid and wicking away the excess liquid with a tissue paper. The grids were air-dried for at least 2 h before imaging.

Electrochemical Measurements: Electrochemical measurements of cyclic voltammetry (CV), rotating disk electrode (RDE) and rotating ring-disk electrode (RRDE) were carried out by a potentiostat (760D, CH Instruments, Shanghai, China) with a conventional three-electrode electrochemical cell installed with a platinum mesh as the counter electrode and a Hg/HgO (1 M NaOH) as the reference electrode. For the preparation of working electrodes, an electrocatalyst was dispersed with the aid of sonication in a mixed solution consisted of water, ethanol, and Nafion solution (5 wt%, Dupont) (V_{water} : $V_{ethanol}$: V_{Nafion} =1:9:0.1) to form a catalyst ink (3.9 mg/mL). Next, 60 µL of the catalyst ink was dropped on the surface of glassy carbon RDE (0.19625 cm², PINE Instruments) and then evaporated in air. For comparison, working electrodes of 20 wt% commercial Pt/C (Johnson Matthey-JM) were prepared in a similar manner. Cyclic voltammetry (CV) characterization of catalysts was carried out in N₂-purged alkaline solution (0.1 M KOH) with a potential range of -0.8 to 0.2 V (vs. Hg/HgO) at a positive scanning rate of 100 mV s⁻¹. The oxygen reduction reaction (ORR) polarization curves of RDE and RRDE (disk area: 0.2475 cm², ring area: 0.1886 cm², PINE Instrument) were obtained in O₂-saturated 0.1 M KOH aqueous solution with a scanning range of -0.8 to 0.2 V (vs. Hg/HgO). The peroxide percentage (%HO₂⁻¹ and electron transfer number (n) were evaluated based on the following equations:

$$j_{\rm lim} = 0.62 n F D^{2/3} v^{-1/6} C_o \omega^{1/2}$$
 (1)

$$%HO_2^- = 200 \times \frac{Ir/N}{(Ir/N) + Id}$$
 (2)

In equation (1), j_{lim} is the limiting current density; *n* is the number of electrons transferred per oxygen molecule; $F(96485 \text{ C mol}^{-1})$ is the Faraday constant; $D(1.9 \times 10^{-5} \text{ cm}^2 \text{ s}^{-1})$ is the diffusion coefficient of O₂ in 0.1 KOH and $Co(1.2 \times 10^{-6} \text{mol cm}^{-3})$ is the concentration of O₂ in the electrolyte.² *v* is the kinetic viscosity of the solution (0.01 $\text{cm}_2 \text{ s}^{-1}$); and ω is the electrode rotation rate (rad s⁻¹). In equation (2) and (3), I_r and I_d is the ring and disk current, respectively. The manufacturer's value of *N* (ring collection efficiency) is 37%. For durability test, potential cycling were conducted under a harsh degradation condition in the range of -0.4 to 0.2 V (vs. Hg/HgO) for a total number of 1500 cycles in O₂-saturated 0.1 M KOH. The potential sweep rate was 100 mV s⁻¹. After certain cycling numbers, ORR polarization curve was collected to track the degradation of electrocatalysts.

Figure S1. The ORR polarization curves of electrocatalystat different theoretical loadings (transition metal salts on GO) obtained at a positive scanning rate of 5 mVs⁻¹ and 1600 rpm in O_2 -saturated 0.1 M KOH aqueous solution.

Figure S2.(a) Ring current density and disk current density of the Fe₃Co-rGO obtained at different rpmand (b) n number and %HO₂ at 1600 rpmin O₂-saturated 0.1 M KOH aqueous solution with a positive scanning rate of 5 mVs⁻¹; (c) ORR polarization curves of the Fe₃Co-rGO (repeated) recorded in O₂-saturated 0.1 M KOH at different scan rates (225-1600 rpm); (d) K-L plots (repeated) at different potentials derived from the ORR polarization curves in (c).

Figure S3. Current density degradation at 0 V (vs. Hg/HgO) in the potential cycling process from -0.4 to 0.2 V at a scan rate of 100 mV s⁻¹.

Figure S4. The ORR polarization curves of (a) the 20 wt% Pt/C, (b) the Fe₃Co-rGO (c) 20 wt% Pt/C (repeated) and (d)Fe₃Co-rGO (repeated) obtained after certain potential cycling numbers (0, 200, 400, 600, 1000 and 1500) with a positive scanning rate of 5 mVs⁻¹ at 1600 rpm in O₂-saturated 0.1 M KOH aqueous solution.

Figure S5. SEM (a) and TEM (b) image of the electrocatalyst Fe₃Co-rGO.

Figure S6.The size distribution of nanoparticles on rGO of the Fe₃Co-rGO by measuring randomly selected 220 individual nanostructures.

Figure S7. (a) HAADF STEM image of the Fe₃Co-rGO; (b) EDX of the Fe₃Co-rGO for the selected area in (a).

Figure S8. Fe and Co EDX mapping of selected area 1 for the Fe₃Co-rGO.

Figure S9.HR-TEM image for Fe₃Co-rGO.

Figure S10.High resolution XPS of Fe and Co for the Fe₃Co-rGO.

Literature	С _{кон} (М)	RDE (rpm/mVs ⁻¹)	∴E _{onset potential} (mV)	△E _{1/2} (mV)	H ₂ O ₂ (%)
This study	0.1	1600/5	5	-23	~18
Nat. Mater., 2011, 10, 780	0.1	1600/5	unknown	-30	~6
J. Am. Chem. Soc., 2012, 134, 15849	1	1600/5	unknown	-35	~12
J. Am. Chem. Soc., 2012, 134, 3517	0.1/1	1600/5	unknown	-20	~10
Angew. Chem. Int. Ed.,2011, 50, 3257	1	1600/5	10	unknown	unknown

Table S1.ORR activity of recently reported highly active non-noble metal electrocatalysts in alkaline solutionscompared with the 20 wt% commercial Pt/C at a metal loading of 20 μg_{Pt} cm⁻²

References:

1 a) C.Vallés, C.Drummond, H.Saadaoui, C.A.Furtado, M.He, O.Roubeau, L.Ortolani, M.Monthioux, A.Pénicaud, J

Am. Chem. Soc., 2008, 130, 15802; b) W. S. Hummers, R. E. Offeman, J Am. Chem. Soc., 1958, 80, 1339.

2 S. Wang, D. Yu, L. Dai, D. W. Chang, J. B. Baek, ACS Nano, 2011, 5, 6202.