## **Supporting Information**

# Zn<sub>3</sub>V<sub>2</sub>O<sub>8</sub> hexagon nanosheets: a high-performance anode material for lithium-ion batteries

## Contents

Experimental Section: The synthesis of Zn<sub>3</sub>V<sub>2</sub>O<sub>8</sub> nanoparticles.

*Figure S1*. TG analysis of Zn<sub>3</sub>V<sub>2</sub>O<sub>7</sub>(OH)<sub>2</sub>2H<sub>2</sub>O.

Figure S2. XPS images of Zn2p<sub>3/2</sub>, (A) as-prepared; (B) discharge down to 0.01V

Figure S3. XPS images of V2p<sub>3/2</sub>, (A) as-prepared; (B) discharge down to 0.01V

*Figure S4.* (A) the crystal structure of  $Zn_3V_2O_8$ , perspective views from (B)a, (C)b, (D)c planes, respectively, (E)a planes of  $4 \times 4 \times 4$  supercell.

Figure S5. XRD patterns of Zn<sub>3</sub>V<sub>2</sub>O<sub>8</sub> nanoparticles.

*Figure S6.* The SEM image of Zn<sub>3</sub>V<sub>2</sub>O<sub>8</sub> nanoparticles.

*Figure S7.* Nitrogen adsorption and desorption isotherms of  $Zn_3V_2O_8$  hexagon nanosheets, with the corresponding pore-size distribution (inset) calculated by the BJH method from the desorption branch.

*Figure S8*. Nitrogen adsorption and desorption isotherms of  $Zn_3V_2O_8$  nanoparticles, with the corresponding pore-size distribution (inset) calculated by the BJH method from the desorption branch.

Figure S9. The SEM image of Zn<sub>3</sub>V<sub>2</sub>O<sub>8</sub> nanosheets electrode after 150 charge/discharge cycles.

### **Experimental Section:**

#### Synthesis of Zn<sub>3</sub>V<sub>2</sub>O<sub>8</sub> nanoparticle

All chemicals used were analytic grade reagents used without further purification. In a typical process, 0.75mmol ZnAc<sub>2</sub> and 0.5mmol NH<sub>4</sub>VO<sub>3</sub> were grinding evenly at room temperature in air. At last the powder was calcined at 600°C in air for 12 h to yield the final products.



Figure S1. TG analysis of Zn<sub>3</sub>V<sub>2</sub>O<sub>7</sub>(OH)<sub>2</sub>2H<sub>2</sub>O.



Figure S2. XPS images of Zn2p<sub>3/2</sub>, (A) as-prepared; (B) discharge down to 0.01V



Figure S3. XPS images of V2p<sub>3/2</sub>, (A) as-prepared; (B) discharge down to 0.01V



Figure S4. (A) the crystal structure of  $Zn_3V_2O_8$ , perspective views from (B)a, (C)b, (D)c planes, respectively, (E)a planes of  $4\times 4\times 4$  supercell.



Figure S5. XRD patterns of  $Zn_3V_2O_8$  nanoparticles.



Figure S6. The SEM image of  $Zn_3V_2O_8$  nanoparticles.



Figure S7. Nitrogen adsorption and desorption isotherms of  $Zn_3V_2O_8$  hexagon nanosheets, with the corresponding pore-size distribution (inset) calculated by the BJH method from the desorption branch.



*Figure S8.* Nitrogen adsorption and desorption isotherms of  $Zn_3V_2O_8$  nanoparticles, with the corresponding pore-size distribution (inset) calculated by the BJH method from the desorption branch.



Figure S9. The SEM image of  $Zn_3V_2O_8$  nanosheets electrode after 150 charge/discharge cycles.