Electronic Supplementary Information

Large Scale Production of Biomass-Derived N-Doped Porous Carbon Spheres for Oxygen Reduction and Supercapacitor

Shuyan Gao, Yanli Chen, Hao Fan, Xianjun Wei, Chuangang Hu, Hongxia Luo, and Liangti Qu

Koutecky-Levich (K-L) plots were analyzed at a rate of 10 mV/s at RDE experiment with varying rotating speed from 400 rpm to 2025 rpm at various electrode potentials (*vs.* Hg/HgO). The electron transfer number (n) is calculated by the slopes of K-L plots and the Equations are as follows:

$$\frac{1}{j} = \frac{1}{j_L} + \frac{1}{j_K} = \frac{1}{B\omega^{\frac{1}{2}}} + \frac{1}{j_K}$$
(1)
$$B = 0.2nF(D_{o_1})^{\frac{2}{3}} v^{\frac{-1}{6}} C_{o_1}$$
(2)

where *j* is the experimentally measured current density, $j_{\rm L}$ is the diffusion-limiting current density, $j_{\rm K}$ is the kinetic current density, ω is the angular frequency of the rotation in terms of rad·s⁻¹, *n* is the overall number of transferred electrons during O₂ reduction, *F* is the Faraday constant (96485 C/mol), D_{o_2} is the diffusion coefficient of O₂ in 0.1M KOH (1.9×10⁻⁵ cm²/s), *v* is the kinematic viscosity (0.01 cm²/s) of the electrolyte solution, and C_{o_2} is the bulk concentration of O₂ (1.2×10⁻⁶ mol/cm³). The constant 0.2 is adopted when the rotation speed is expressed in rpm.

Fig. S1. High resolution O_{1s} (A) and C_{1s} (B) spectra of N-CSs.

Fig. S2. N₂ sorption isotherms of samples N-CSs.

Fig. S3. Pore size distribution of N-CSs.

Fig. S4. The partial K–L plots derived from the RDE measurements of the commercial Pt/C.

Fig. S5. RDE curves for bare-GCE (a), Pt/C (b), N-CSs (c), the directly carbonized products of fermented rice (d), and the directly carbonized products of unfermented rice (e) in O_2 -saturated 0.1 M KOH with rotation speed of 1600 rpm. Scan rate: 10 mV s⁻¹.

Sample	$S_{BET}^{a)}$ [m ² g ⁻¹]	${S_{Mic}}^{b)}$ [m ² g ⁻¹]	$\frac{S_{Mec}}{[m^2g^{-1}]}$	Pore Volumes ^{d)} [cm ³ g ⁻¹]	At.% ^{e)} C	At.% ^{e)} N	At.% ^{e)} O
S-500	3998.4	2825.8	1172.7	1.2317	78.71	10.06	11.23
S-600	2211.0	1794.28	416.6720	0.8377	82.17	8.09	9.74
S-800	1844.1	1555.98	288.1243	0.7327	87.66	5.27	7.07

Table S1. Structure character and elemental composition of N-CSs prepared with a pyrolysis temperature of 500 °C, 600 °C, and 800 °C, respectively.

a) Specific surface area from multiple BET method; b) Micropore surface area from t-plot method; c) t-method external surface area ($S_{Mes}=S_{BET} - S_{Mic}$); d) Total pore volume at p/p₀= 0.99; e) Atomic ratio data from XPS analyses.