Nitrogen-doped carbon and iron carbide nanocomposites as

cost-effective counter electrodes of dye-sensitized solar cells

Hongxia Xu,[‡]^{*a*} Chuanjian Zhang,[‡]^{*a*} Zaiwei Wang,^{*ab*} Shuping Pang,^{*a*} Xinhong Zhou,^{**c*}

Zhongyi Zhang,^a Guanglei Cui*^a

^aThe Qingdao Key Lab of solar energy utilization and energy storage technology,

Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of

Sciences, Qingdao 266101, P. R. China

^bUniversity of Chinese Academy of Sciences, Beijing, 100049, P. R. China

^cQingdao University of Science and Technology, Qingdao, 266101, P. R. China

‡ These authors contributed equally to this work.

* Corresponding author. E-mail: cuigl@qibebt.ac.cn

SUPPORTING INFORMATION

Table of Contents

XRD	patterns	of	Fe ₃ C	@N-C 1	nanocomp	osites	with	different	Fe	C_2O_4/CH_2N_2
ratio										S2
Element	analysis res	ults of H	Fe ₃ C@	N-C with c	lifferent F	R value				S2
SEM and	l TEM imag	es of Fe	eC_2O_4 .							S2
TEM im	ages of Fe ₃ C	C@N-C	-1 and	Fe ₃ C@N-0	C-4					S3
Elementa	al mapping o	of Fe ₃ C	@N-C	nanocomp	osites					S3
Raman s	pectra of Fe	3C@N-	C-1, F	e ₃ C@N-C-	2.5					S4
Consecu	tive 100 cyc	lic volta	ammog	grams for tl	ne Fe ₃ C@	N-C-2.5	СЕ			S4
Equivale	nt circuits	for	the	symmetric	cells	consiste	d of	platinum	and	Fe ₃ C@N-C
electrode	s									S4
SEM ima	ages of near	ly pure	N-C a	nd non-1D	configura	tion Fe ₃ C	@N-C-	2.5		S5
Characte	ristics of th	ne J-V	curve	s of the I	OSSCs fa	bricated	using 1	nearly pure	N-C	and non-1D
configur	ation Fe ₃ C@	N-C-2.	5				•••••			S5

Fig. S1 XRD patterns of Fe₃C@N-C nanocomposites with different FeC₂O₄/NH₂CN ratio.

Sample	Fe ₃ C/wt%	C/wt%	N/wt%
Fe ₃ C@N-C-1	77.66	20.78	1.56
Fe ₃ C@N-C-2.5	87.49	11.98	0.53
Fe ₃ C@N-C-4	90.34	9.55	0.11

Table S1 Element analysis results of Fe₃C@N-C with different FeC₂O₄/NH₂CN ratio.

Fig. S2 SEM and TEM images of FeC₂O₄ nanowires.

Fig. S3 TEM images of Fe₃C synthesized by different FeC₂O₄/ NH_2CN ratio

(a) and (b) R=1, (c) and (d) R=4.

Fig. S4 Elemental mapping of Fe₃C@N-C nanocomposites

Fig. S6 Consecutive 100 cyclic voltammograms for the Fe₃C@N-C-2.5 CE at a scan rate of 20 mV

Fig. S7 equivalent circuits for the symmetric cells consisted of platinum electrodes (a) Fe₃C@N-C (b)

Fig. S8 SEM images of nearly pure N-C (a) and non-1D configuration Fe₃C@N-C-2.5 (b)

Table S2 Characteristics of the *J-V* curves of the DSSCs fabricated using nearly pure N-C and non-1D configuration Fe3C@N-C-2.5

Cou	inter Electrode	$J_{sc}(\text{mA/cm}^2)$	$V_{oc} (\mathrm{mV})$	FF(%)	η (%)
ne	arly pure N-C	14.66	741	58.70	6.38 ± 0.01
non-1D confi	guration Fe ₃ C@N-C-2.5	14.05	740	63.03	6.55 ± 0.02