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Experimental Details 

Materials: Boron-doped (p-type) single crystal Si wafers (4-inch-diameter, 525±15 μm thickness, 

normal doped with 1.0–10.0 ohm·cm resistivity, (100) oriented) were purchased from Silicon 

Technology Corporation. AgNO3 (99.8%) was obtained from Dae Jung Chemical, and HF (48–51 wt%) 

was obtained from J.T. Baker. Concentrated nitric acid solution (64–66 wt%) was obtained from 

Duksan Pure Chemicals. 

 

Fabrication of Nanoporous Si Photocathode: The Si wafers were cut into four pieces, and the back 
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side of each piece was covered with a HF-proof masking layer (Microstop, Pyramid Plastics, INC) to 

prevent etching on both sides of the Si wafers by HF. In order to remove a native oxide formed on the 

Si surface, the Si substrates were first dipped into an aqueous HF solution for 2 min. Nanoporous 

silicon (Np-Si) electrodes were fabricated by a modified metal-catalyzed electroless etching (MCEE) 

method. The Si substrates were plated with silver nanoparticles (Ag NPs) by a galvanic displacement 

reaction in a mixed solution of AgNO3 (0.005 M) and HF (4.8 M) for 1 sec. After the Ag NP seeds were 

formed, MCEE was carried out with a mixed solution containing HF (4.8 M) and H2O2 (0.6 M) in 

deionized water for 30 sec at room temperature. The resulting nanoporous Si electrode was then 

thoroughly washed with deionized water. Excess Ag residues were completely removed by dipping the 

electrode in concentrated nitric acid solution for 20 min. 

 

Deposition of the Al2O3 passivation layer and Pt: In order to deposit the Al2O3 passivation layer onto 

the bare and nanoporous Si electrodes, the electrodes were first cleaned by dipping in an aqueous HF 

solution to remove the native oxide that had formed on its surface. A thin Al2O3 layer was deposited in 

a layer-by-layer fashion onto the Si electrode by atomic layer deposition (ALD, LUCIDA D100). The 

deposition was performed using successive pulses of trimethylaluminum (TMA) and deionized water 

under a nitrogen carrier gas in a vacuum chamber heated at 230 °C. The thickness was measured using 

spectroscopic ellipsometry (Sopra GES 5E, fitted to a Tauc-Lorentz function) and transmission electron 

microscopy (TEM). The Pt catalyst was deposited by sputtering (Q150R S Sputter Coater, Quorum) at 

a current of 20 μA for 5 s. 

 

Characterization: Scanning electron microscopy (SEM) was carried out using a field-emission 

scanning electron microscope (Hitachi S-4800 FESEM) equipped with an energy dispersive X-ray 

spectroscopy (EDS) detector. TEM was carried out using a JEOL 2010F at an acceleration voltage of 

200 kV. X-ray photoelectron spectroscopy (XPS) measurements were performed using a PHI Versa 

Probe system with a 100 W Al K Alpha X-ray source with a spot size of 400 µm at a 45° incident angle. 

The reflection spectra of the Si specimens were measured using a Perkin Elmer Lambda 750 

UV/VIS/NIR spectrophotometer with an integrating sphere (Labsphere) in a wavelength range of 300–
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1200 nm, which corresponds to the major spectral irradiance of sunlight. The minority carrier lifetimes 

were measured using a silicon wafer lifetime tester (WCT-120, Sinton Instruments). 

 

Photoelectrochemical measurement: Photocurrent-photovoltage (J-V) responses were recorded using a 

potentiostat (Iviumstat) at a scan rate of 50 mV/s in a three-electrode configuration using Pt gauze as a 

counter electrode and an Ag/AgCl reference electrode. An aqueous H2SO4 solution (0.5 M) was 

employed as an electrolyte. Prior to the photocurrent measurement, the electrolyte was thoroughly 

purged with N2 gas for 10 min to expel O2 dissolved in the H2SO4 solution and kept purged during the 

measurement to ensure O2-free electrolyte. In order to form an ohmic contact between a copper plate 

and the fabricated Si photocathode, gallium-indium eutectic (Sigma-Aldrich) was spread onto the back 

side of the photoelectrode. The area of the Si electrode exposed to the electrolyte was 0.38 cm2. 

Photoelectrochemical performance of the Si electrodes was investigated under the illumination of AM 

1.5G (100 mW/cm2) using a solar simulator (Peccel PEC-L11). The potentials were rescaled to the 

potentials versus the reversible hydrogen electrode (RHE) according to the following equation: E (RHE) 

= E (Ag/AgCl) + 0.197 V at pH 0. 
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Fig. S1 XPS survey spectrum of Al2O3/bare Si photoelectrode. 

 

 

Fig. S2 Atomic percentages of Si 2p (black), O 1s (red) and Al 2p (blue) as a function of electron 

take-off angle determined by the XPS analysis of an Al2O3/bare Si photoelectrode. 
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Fig. S3 XPS spectra of Si 2p from Si photocathode before the ALD of a thin Al2O3 layer. 

 

 

Fig. S4 Schematic illustration of electrode structure of Al2O3/bare Si photoelectrode. 
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Fig. S5 J-V curves of the Al2O3/bare Si photoelectrodes as a function of Al2O3 thickness (different 

samples). Note that J-V curves of Si photoelectrodes slightly vary from sample to sample, but the same 

overall trend in overpotential change as a function of Al2O3 thickness was observed for multiple 

samples. 

 

Fig. S6 Long-term stability test of (a) bare Si and (b) Al2O3(2.3 nm)/bare Si photoelectrodes at -0.9 V 

vs. RHE under AM 1.5G (100 mW/cm2) illumination (different samples). 
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Fig. S7 TEM images of Al2O3/bare Si photoelectrode after 12 h long-term test. 
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Fig. S8 (a) TEM images of Al2O3/bare Si photoelectrode (a different sample was used to affirm the Pt 

deposition) after 12 h long-term test and (b) EDS point analysis. 
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Fig. S9 XPS spectrum of Al 2s from Al2O3/bare Si photoelectrode after 12 h long-term test. Note that 

Al 2s spectrum was collected instead of Al 2p spectrum because of the peak overlap of Al 2p and Pt 4f. 

 

 

Fig. S10 SEM and TEM images of nanoporous Si photoelectrode. 
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Fig. S11 Reflectance spectra of bare Si (black), Np-Si (green), Al2O3/Np-Si (blue) and Pt/Al2O3/Np-Si 

(red) 

 

 

Fig. S12 J-V curves of the bare Si, Al2O3/bare Si, Np-Si, and Al2O3/Np-Si photoelectrodes (different 

samples). Note that J-V curves of Si photoelectrodes slightly vary from sample to sample, but the same 

overall trend in overpotential change was observed for multiple samples. 
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Fig. S13 Chopped photocurrent measurement of Np-Si (Black) and Al2O3/Np-Si (Red). The bias 

potential of 0.3 V with respect to RHE was applied for 8 s (4 s with light ON and 4 s with light OFF). 
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Fig. S14 Long-term stability test of (a) Np-Si and (b) Al2O3/Np-Si photoelectrodes at -0.9 V vs. RHE 

under AM 1.5G (100 mW/cm2) illumination (different samples). Note that the performance of Si 

photoelectrodes slightly vary from sample to sample, but the same trend in long-term stability was 

observed for multiple samples. 
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Fig. S15 TEM images of Pt nanoparticles deposited on Np-Si photoelectrode. 

 

 

Fig. S16 J-V curves of the Np-Si, Al2O3/Np-Si, Pt/Np-Si, and Pt/Al2O3/Np-Si photoelectrodes 

(different samples). Note that J-V curves of Si photoelectrodes slightly vary from sample to sample, but 

the same overall trend in overpotential change was observed for multiple samples. 
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