Electronic Supplementary Information (ESI)

Mesoporous Mn₃O₄-CoO Core-Shell Spheres Wrapped by Carbon Nanotubes: A High Performance Catalyst for the Oxygen Reduction Reaction and CO Oxidation

Junwu Xiao, ^{*a} Lian Wan,^a Xue Wang,^b Qin Kuang,^b Shuang Dong,^a Fei Xiao,^a and Shuai Wang^{*a}

^aDepartment of Chemistry and Chemical Engineering, Hubei Key Laboratory of Matieral Chemistry and Service Failure, Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, Huazhong University of Science & Technology, Wuhan, PR China

^bDepartment of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, PR China.

E-mail: chjwxiao@hust.edu.cn, chmsamuel@hust.edu.cn

Figure SI-1. XRD patterns of the products obtained in the Step I (A), II (B), IV (C) and V (D) of Figure 1. The peak labeld by the arrow is acribed to the diffraction peak of CNT. According to the the standard XRD patterns of $K_{0.27}MnO_2 \cdot 0.54H_2O$ (JCPDS 86-0666), Mn_3O_4 (JCPDS 24-0734), and CoO (JCPDS 48-1719), it can find that the products obtained in the Step I (A), II (B), IV (C) and V (D) correspond to the $K_{0.27}MnO_2 \cdot 0.54H_2O$ /CNT, Mn_3O_4 /CNT, Mn_3O_4 -CoO/CNT, and CoO/CNT nanocomposites, respectively.

Figure SI-2. (A) SEM image of the $K_{0.27}MnO_2 \cdot 0.54H_2O$ /CNT composites (arrow: CNT), and (B) Fourier transform infrared spectra (FT-IR) of the pristine CNT and $K_{0.27}MnO_2 \cdot 0.54H_2O$ /CNT composites. As compared with that in the pristine CNT, the asymmetric and symmetrical stretching vibration of C=O in the $K_{0.27}MnO_2 \cdot 0.54H_2O$ /CNT composites shift to lower wavenumber, such as, from 1698 to 1516 cm⁻¹, and 1544 to1421 cm⁻¹. This shift can be ascribed to the formation of COO-M (M=K, Mn) in the $K_{0.27}MnO_2 \cdot 0.54H_2O$ /CNT composites.

Figure SI-3. N_2 adsorption (solid)-desorption (hollow) isotherms of the Mn_3O_4/CNT (square) and Mn_3O_4 -CoO/CNT (circle) nanocomposites measured at standard temperature and pressure, and (B) the corresponding BJH pore size distribution.

Figure SI-4. (A) TEM image of the Mn_3O_4 -CoO/CNT spheres, and (B) the Mn and Co atomic percentages in the position a-e labeled in (A). We can see that Co and Mn element are dominant in the edge and center of the spheres, respectively. It indicates that the Mn_3O_4 and CoO components distribute in the core and shell, respectively, forming the Mn_3O_4 -CoO core-shell spheres.

Figure SI-5. TEM images of the CoO/CNT nanocomposites.

Figure SI-6. Rotating disk voltammograms at different rotation rates of (A) the Mn_3O_4/CNT , (B) CoO/CNT, (C) Mn_3O_4 -CoO/CNT, and (D) the commercial Pt/C electrodes in O_2 -saturation 0.1 M KOH electrolyte. (Inset: the corresponding Koutecky-Levich plots at different electrode potentials)

Figure SI-7. TGA result of the Mn_3O_4/CNT composites, which was performed from 50 to 700 °C at a heating rate of 5 °C min⁻¹ under an air flow of 25 mL min⁻¹. There is no weight loss at < 250 °C for the Mn_3O_4/CNT composites, indicating that CNT are very stable in this temperature range.