Hybrid Energy Storage: High Voltage Aqueous Supercapacitors based on Activated Carbon / Phosphotungstate Hybrid Materials

J. Suárez-Guevara^a, V. Ruiz^a* and P. Gomez-Romero^{a, b}*

Supporting information

^a Centro de Investigación en Nanociencia y Nanotecnología, CIN2/ICN2 (CSIC). Campus UAB 08193 Bellaterra (Barcelona), Spain. E-mail: <u>vanesa.ruiz@cin2.es</u> <u>pedro.gomez@cin2.es</u>

^b MATGAS Research Center. Campus UAB, 08193 Bellaterra (Barcelona), Spain.

Figure Captions

Figure S1.- FTIR spectra of pristine Activated Carbon (AC) and AC-PW₁₂ materials prior to electrochemical cycling

Figure S2.- FTIR spectra of pristine Activated Carbon (AC) electrode (middle trace) and the same electrode after repeated cycling as positive electrode in a symmetric AC/AC supercapacitor cell (top trace). The asterisk marks a conspicuous new peak assigned to C=O indicative of carbon oxidation. Remarkably that peak is absent in the corresponding hybrid electrode AC-PW₁₂ also cycled similarly as the positive electrode in a symmetric AC-PW₁₂/AC-PW₁₂ cell.

Figure S1.- FTIR spectra of pristine Activated Carbon (AC), AC-PW₁₂ materials prior to electrochemical cycling and phosphotungstic acid (H₃-PW₁₂).

Figure S2.- FTIR spectra of pristine Activated Carbon (AC) electrode (middle trace) and the same electrode after repeated cycling as positive electrode in a symmetric AC/AC supercapacitor cell (top trace). The asterisk marks a conspicuous new peak assigned to C=O indicative of carbon oxidation. Remarkably that peak is absent in the corresponding hybrid electrode AC-PW₁₂ also cycled similarly as the positive electrode in a symmetric AC-PW₁₂/AC-PW₁₂ cell.

