Supporting Information

Synthesis of ultrathin PtPdBi nanowire and its enhanced catalytic activity towards *p*-nitrophenol reduction

Yan-Yan Shen, Yue Sun, Lin-Nan Zhou, Yong-Jun Li* and Edward S. Yeung

State Key Lab of Chemo/Biosensing and Chemometrics, School of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China

Synthesis of Pt and Pd nanoparticles

Typically, 55 mg of PVP was dissolved into 9.4 mL of ethylene glycol and heated to 170°C under a flow of argon gas. Subsequently, 1.0 mL of ethylene glycol containing 32.0 mg of Na₂PtCl₄·3H₂Owas injected rapidly. The reaction solution was kept at 170°C under magnetic stirring for 15 min before being cooled to room temperature.

Typically, 27.5 mg of PVP was dissolved into 9.4 mL of ethylene glycol and heated to 170° C under a flow of argon gas. Subsequently, the mixture of 3.662 mL of 0.01 mol/L H_2 PdCl₄ aqueous solution was injected rapidly. The reaction solution was kept at 170° C under magnetic stirring for 30 min before being cooled to room temperature.

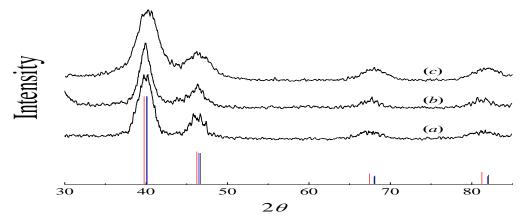


Figure S1.XRD patterns of (a) Pt₉₃Bi₇ NWs, (b) Pd₉₂Bi₈ NWs, and (c) Pt₅₉Pd₄₁ NPs. The red lines are the XRD peaks of Pt (JCPDF Card File 04-0802), the black lines are the XRD peaks of Pd (JCPDF Card File 46-1043), and the blue lines are the XRD peaks of PtPd (JCPDF Card File 65-6418).

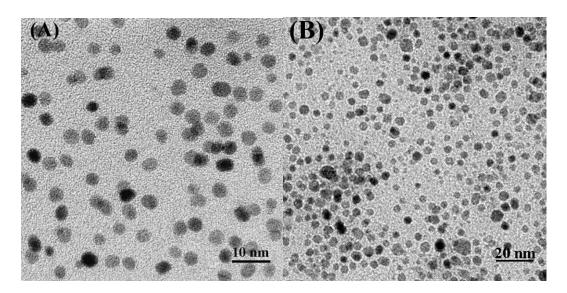


Figure S2. TEM images of Pt (A) and Pd (B) nanoparticles.

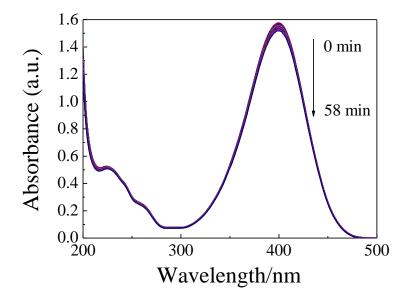


Figure S3. UV-vis spectra of the conversion from *p*-nitrophenol to *p*-aminophenol over one hour without adding any metal catalyst.

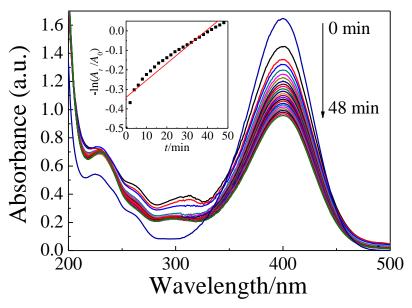


Figure S4. Successive absorption spectra of the conversion from p-nitrophenol to p-aminophenolwith $Pt_{58}Pd_{42}$ catalysts. Inset was plot of $-\ln(A_tA_0)$ versus t.