## **Electronic Supplementary Information**

Versatile synthesis of high surface area multi-metallic nanosponges allowing control over nanostructure and alloying for catalysis and SERS detection

Shaochun Tang, Sascha Vongehr, Yongguang Wang, Juan Cui, Xiangyu Wang and Xiangkang Meng<sup>\*</sup>

Institute of Materials Engineering, National Laboratory of Solid State Microstructures and College of Engineering and Applied Sciences, Nanjing University, Jiangsu, P. R. China

\*E-mail: <u>mengxk@nju.edu.cn</u>. Tel: +86-25-83685585. Fax: +86-25-83595535.

## **Figure captions:**

**Fig. S1.** SEM images of Ag products obtained with air drying at r.t. (a) and 60  $^{\circ}$ C (b) instead of freeze drying.

**Fig. S2.** A low-magnification SEM image of Au nanosponges obtained with  $C_{Au} = 24$  mM and  $T_{prep} = 0$  °C while all other parameters remained as before.

**Fig. S3.** XRD patterns of Pd products obtained with different  $T_{\text{prep}}$  of 0 °C, 25 °C, and 60 °C.

**Fig. S4.** TEM and SEM images showing the Pd products prepared with different  $PdCl_6^{2-}$  concentrations of 2 mM (a), 4 mM (b), 8 mM (c), and 24 (d) mM. The inset of d is the SAED pattern recorded from one circled bead.

**Fig. S5**. SEM and TEM images of Pd product obtained before (a) and after (b)  $t_{\text{shake}} = 1$  min. The main effect is due to the addition of ethanol just before shaking. SEM images of the Pd products obtained with different shaking times of 5 (c), 30 (d), 60 (e), and 120 min (f). The inset of a is a corresponding TEM image.

Fig. S6. TEM (a) and HRTEM (b) images showing an interface between two beads in the Pd products obtained by shaking for  $t_{\text{shake}} = 60$  min.

**Fig. S7**. XRD patterns of the obtained Ag-Au with different molar ratios (a), and typical bimetallic sponges of  $Ag_{50}Pt_{50}$  (b),  $Pd_{50}Pt_{50}$  (c), and  $Ni_{20}Co_{80}$  (d).

**Table S1.** Molar ratios of noble-metal multi-metallic sponges synthesized fromdifferent volumes of 24 mM precursor solutions.

**Fig. S8.** XRD pattern of the products obtained via combining Ag and Pd NPs' suspensions instead of ion solutions, yet otherwise with the same procedures as those for alloys.

**Fig. S9**. SEM images of the Pd products obtained by replacing ethanol (a) and glycerol (b) with water in the mixed reagent.

## **Supplementary Fig.s and captions**



Fig. S1. SEM images of Ag products obtained with air drying at r.t. (a) and 60  $^{\circ}$ C (b) instead of freeze drying.



**Fig. S2.** A low-magnification SEM image of Au nanosponges obtained with  $C_{Au} = 24$  mM and  $T_{prep} = 0$  °C while all other parameters remained as before.



**Fig. S3.** XRD patterns of Pd products obtained with different  $T_{\text{prep}}$  of 0 °C, 25 °C, and 60 °C.



**Fig. S4.** TEM and SEM images showing the Pd products prepared with different  $PdCl_6^{2-}$  concentrations of 2 mM (a), 4 mM (b), 8 mM (c), and 24 (d) mM. The inset of d is the SAED pattern recorded from one circled bead.



**Fig. S5**. SEM and TEM images of Pd product obtained before (a) and after (b)  $t_{\text{shake}} = 1$  min. The main effect is due to the addition of ethanol just before shaking. SEM images of the Pd products obtained with different shaking times of 5 (c), 30 (d), 60 (e), and 120 min (f). The inset of a is a corresponding TEM image.



Fig. S6. TEM (a) and HRTEM (b) images showing an interface between two beads in the Pd products obtained by shaking for  $t_{\text{shake}} = 60$  min.



Fig. S7. XRD patterns of the obtained Ag-Au with different molar ratios (a), and typical bimetallic sponges of  $Ag_{50}Pt_{50}$  (b),  $Pd_{50}Pt_{50}$  (c), and  $Ni_{20}Co_{80}$  (d).

|                                                    | AgNO <sub>3</sub> [mL] | HAuCl <sub>4</sub> [mL] | K <sub>2</sub> PdCl <sub>4</sub> [mL] | K <sub>2</sub> PtCl <sub>6</sub> [mL] |
|----------------------------------------------------|------------------------|-------------------------|---------------------------------------|---------------------------------------|
| Ag <sub>50</sub> Pd <sub>50</sub>                  | 5.00                   | /                       | 5.00                                  | /                                     |
| Ag <sub>75</sub> Pd <sub>25</sub>                  | 7.50                   | /                       | 2.50                                  | /                                     |
| Ag <sub>67</sub> Pd <sub>33</sub>                  | 6.67                   | /                       | 3.33                                  | /                                     |
| $Ag_{50}Au_{50}$                                   | 5.00                   | 5.00                    | /                                     | /                                     |
| Ag <sub>75</sub> Au <sub>50</sub>                  | 7.50                   | 2.50                    | /                                     | /                                     |
| $Au_{50}Pd_{50}$                                   | /                      | 5.00                    | 5.00                                  | /                                     |
| $Ag_{50}Pt_{50}$                                   | 5.00                   | /                       | /                                     | 5.00                                  |
| Ag <sub>75</sub> Pt <sub>25</sub>                  | 7.50                   | /                       | /                                     | 2.50                                  |
| Ag <sub>67</sub> Pt <sub>23</sub>                  | 6.67                   | /                       | /                                     | 3.33                                  |
| $Pd_{75}Pt_{25}$                                   | /                      | /                       | 7.50                                  | 2.50                                  |
| Pd <sub>67</sub> Pt <sub>33</sub>                  | /                      | /                       | 6.67                                  | 3.33                                  |
| $Pd_{50}Pt_{50}$                                   | /                      | /                       | 5.00                                  | 5.00                                  |
| Ag <sub>34</sub> Au <sub>33</sub> Pd <sub>33</sub> | 3.34                   | 3.33                    | 3.33                                  | /                                     |
| $Ag_{40}Au_{40}Pd_{20}$                            | 4.00                   | 4.00                    | 2.00                                  | /                                     |
| $Ag_{60}Au_{20}Pd_{20}$                            | 6.00                   | 2.00                    | 2.00                                  | /                                     |
| Ag <sub>34</sub> Pd <sub>33</sub> Pt <sub>33</sub> | 3.33                   | /                       | 3.33                                  | 3.33                                  |

**Table S1.** Molar ratios of noble-metal multi-metallic sponges synthesized fromdifferent volumes of 24 mM precursor solutions.



**Fig. S8.** XRD pattern of the products obtained via combining Ag and Pd NPs' suspensions instead of ion solutions, yet otherwise with the same procedures as those for alloys.



**Fig. S9**. SEM images of the Pd products obtained by replacing ethanol (a) and glycerol (b) with water in the mixed reagent.