Electronic Supplementary Information

Mesoporous materials-based manipulation of the enzyme-like activity of CoFe₂O₄ nanoparticles

Yingwei Fan^{*a,b*}, Wenbing Shi^{*a,c*}, Xiaodan Zhang^{*a*}, Yuming Huang^{*a*}

 ^a The Key Laboratory of Luminescence and Real-time Analysis, Ministry of Education; College of Chemistry and Chemical Engineering, Southwest University Beibei, Chongqing 400715 (China)
 E-mail: ymhuang@swu.edu.cn
 ^b Luohe Medical College, Luohe, Henan 462002 (China)
 ^c College of Chemistry and Chemical Engineering, Yangtze Normal University Fuling, Chongqing 408003 (China)

Experimental Section

Materials: All chemicals used in this work were of analytical grade and used as received without further purification. Luminol was from Merck (Germany), a 0.01 mol L⁻¹ luminol solution was prepared by dissolving 1.772 g luminol in 1000 mL of 0.01 mol L⁻¹ NaOH solutions. γ -Al₂O₃ and SiO₂ were from Sigma-Aldrich. The SBA-15 was prepared according to the method reported by Zhao et al.² 3,3,5,5-tetramethylbenzidine (TMB) was purchased from Sigma-Aldrich (St. Louis, MO) and stored in a refrigerator at 4 °C. H₂O₂, sodium carbonate, sodium hydrogen carbonate, sulfuric acid, hydrochloric acid, sodium hydroxide, acetic acid, sodium acetate, citrate acid and sodium citrate were obtained from Chongqing Chemical Reagents Company (Chongqing, China). All glassware was soaked in 10% nitric acid and thoroughly cleaned before use. Ultra pure water prepared in the lab was used throughout. The CoFe₂O₄ MNPs were prepared according to the method of Massart et al.¹ The size of the as-synthesized CoFe₂O₄ NPs was characterized by a model Philips Tecnai 10 transmission electron microscope (TEM, Philips) and the average diameter of the prepared CoFe₂O₄ NPs was 14 ± 2 nm.

Preparation of SBA-15, SiO₂ and Al₂O₃ supported CoFe₂O₄ MNPs: The coated CoFe₂O₄ MNPs was prepared by adding 0.02 g SBA-15 (or 0.05 g SiO₂ and Al₂O₃) and 5 mL of 1.07 mg mL⁻¹ CoFe₂O₄ MNPs into a 50 mL beaker, then 5 mL of 0.1 mol L⁻¹ sulfuric acid was added slowly to the beaker, the mixture was stirred for 5 h at room temperature. The obtained solution was diluted to 50 mL and stored at room temperature for further use.

Instrumentation: CL measurements were performed on a MCFL-A Multifunction Chemiluminescence/Bioluminescence Analyzer (Ruike Electronic Equipment Company Ltd., Xi'an, China). The pH of the solutions was detected by a PHS-3D pH meter (Shanghai Precision Scientific Instruments Co., Ltd., China); The CL spectra were recorded on an F-4500 spectrofluorimeter (Kyoto, Japan) under the model of fluorescence scan by turning off the excitation light. UV–visible measurements were performed on a UV–2450 Shimazhu spectrophotometer (Shuzhou, China). The zeta

potential was measured by Zetasizer Nano ZS90 apparatus (Malvern, UK). The scanning transmission electron microscopy (SEM) images were taken on Hitachi model S-4800 field emission scanning electron microscope (Hitachi, Japan), with an accelerating voltage of 5 to 20 kV. The N₂ adsorption–desorption isotherms were performed on a Quantachrome Autosorb Automated Gas Sorption System (Quantachrome Instruments, America). The microscope images were obtained on an Olympus IX70 Inverted Fluorescence Microscope (Olympus America Inc.). The size distribution was performed by counting 100 particles.

CL analysis: The CL intensity was measured by a flow injection CL system. Two peristaltic pumps (30 r min⁻¹, Longfang Instrument Factory, Wenzhou, China) were used to deliver all solutions; one for delivering catalyst solution and water carrier stream; the other for delivering CL reaction reagents. PTFE tubing (0.8 mm i.d.) was used to connect all components in the flow system. For CL measurement, flow lines were inserted into the luminol solution, water, and CoFe₂O₄ MNPs or supported CoFe₂O₄ MNPs solution, respectively. Then the pumps were started at flow rate of 3 mL min⁻¹ (per tube) until a stable baseline was recorded. Injection was made by using an eight-way injection valve equipped with a 200 μ L sample loop. The CL signal produced was detected by a photomultiplier tube (operated at -500 V), then recorded by a computer, equipped with a data acquisition interface. Data acquisition and treatment were performed with REMAX software running under Windows XP. All results were performed in triplicate, and the data were recorded as a mean.

References

- 1 F. A. Tourinho, R. Franck, R. Massart, J. Mater. Sci., 1990, 25, 3249–3254.
- D. Y. Zhao, J. L. Feng, Q. S. Huo, N. Melosh, G. H. Fredirckson, B. F. Chmelka,
 G. D. Stucky, *Science*, 1998, 279, 548-552.

Support	Surface area	Pore diameter	Pore volume
	$(m^2 g^{-1})$	(nm)	$(\text{cm}^3 \text{g}^{-1})$
Al_2O_3	183.8	4.47	0.24
SBA-15	320.2	5.85	0.43
SiO ₂	354.5	13.40	1.04

 Table S1 Surface features of the supports

Fig. S1. CL spectra for the luminol–CoFe₂O₄ system. (a): luminol solution; (b): CoFe₂O₄+luminol; (c): SBA-15 supported CoFe₂O₄+luminol; (d): SiO₂ supported CoFe₂O₄+luminol; (e): Al₂O₃ supported CoFe₂O₄+luminol. Conditions: luminol concentration: 1.0×10^{-5} mol L⁻¹ in 0.1 mol L⁻¹ Na₂CO₃–NaHCO₃ buffer (pH 11.7); CoFe₂O₄ concentration: 2.14 mg L⁻¹; SBA-15, SiO₂, Al₂O₃ supported CoFe₂O₄ were made by 2.14 mg L⁻¹ CoFe₂O₄ and 8 mg L⁻¹ SBA-15, 20 mg L⁻¹ SiO₂, and 20 mg L⁻¹ Al₂O₃, respectively.

Fig. S2. Images of oxidation color reaction of TMB by H_2O_2 after catalyzing by $CoFe_2O_4$ or supported $CoFe_2O_4$ at pH 3.5 (0.2 mol L⁻¹ acetate buffer) and subsequently being quenched by H_2SO_4 . Conditions: TMB concentration : 5.0×10^{-5} mol L⁻¹; H_2O_2 concentration: 5.0×10^{-3} mol L⁻¹; H_2SO_4 concentration: $2.0 \text{ mol } L^{-1}$; $CoFe_2O_4$ concentration: $6.42 \text{ mg } L^{-1}$; SBA-15, SiO_2 , Al_2O_3 supported $CoFe_2O_4$ were made by 2.14 mg L⁻¹ CoFe_2O_4 and 8 mg L⁻¹ SBA-15, 20 mg L⁻¹ SiO_2, and 20 mg L⁻¹ Al_2O_3, respectively.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A This journal is The Royal Society of Chemistry 2013

Supplementary Material (ESI) for Journal of Material Chemistry A This journal is (c) The Royal Society of Chemistry 2013

SiO₂ supported CoFe₂O₄ Al₂O₃ supported CoFe₂O₄

Fig. S3A. Microscope images and particle size distribution (right) of uncoated and coated SiO_2 and Al_2O_3 supported $CoFe_2O_4$.

Supplementary Material (ESI) for Journal of Material Chemistry A This journal is (c) The Royal Society of Chemistry 2013

Fig. S3B. The FT-IR spectra of support, $CoFe_2O_4$, and $CoFe_2O_4$ -coated support. Inset: The difference spectrum between $CoFe_2O_4$ -coated support and uncoated support.

The FT-IR spectra in Fig. S3B suggest that the positions and the relative intensities of the bands for the supported complexes are very similar to that of support. For example, for SBA-15 supported CoFe₂O₄, the absorption band at 1176 cm⁻¹ is assigned for asymmetric Si–O–Si stretching mode. The band at 1069 cm⁻¹ corresponds to Si–O–H stretching mode. The bands at 887 and 850 cm⁻¹ correspond to Si–O–Si symmetric stretching vibration mode. The absorption band at 577 corresponds to Si–O–Si and O–Si–O bending mode.¹ For CoFe₂O₄ MNPs, the band at 1115 cm⁻¹ is corresponds to the Fe-Co alloys system. The bands at 570 ~ 615 and 420 cm⁻¹ are respectively attributed to the Fe-O and Co–O vibrational modes (The 1384 cm⁻¹ peak reveals existence of the NO₃⁻⁻ impurity in the CoFe₂O₄ sample).^{2,3} The difference spectra between CoFe₂O₄-coated support and uncoated support showed characteristic CoFe₂O₄ absorption bands despite the weak signal as a result of the low CoFe₂O₄ concentration, suggesting unambiguously that CoFe₂O₄ was coated on the supports surface. It is noted that the Fe–O stretching band was found to shift from 615 to 566, 567 and 560 cm⁻¹, the Co–O stretching band was found to shift from 420 cm⁻¹, respectively.

References

- 1 J. Yang, J. Zhang, L. W. Zhu, S. Y. Chen, Y. M. Zhang, Y. Tang, Y. L. Zhu, Y. W. Li, *J. Hazard. Mater.*, 2006, **137**, 952-958.
- 2 S. Rana, J. Philip, B. Raj, Mater. Chem. Phys., 2010, 124, 264-269.
- 3 L.A.C. Cruz, C.A.M. Perez, H.A.M. Romero, P.E.G. Casillas, J. Alloy Compd., 2008, 466, 330-334.

Fig. S4. pH optimization of the luminol solution on the CL response. Conditions: luminol: 2.0×10^{-6} mol L⁻¹; 0.1 mol L⁻¹ Na₂CO₃–NaHCO₃ buffer; CoFe₂O₄: 2.14 mg L⁻¹; SBA-15, SiO₂, Al₂O₃ supported CoFe₂O₄ were made by 2.14 mg L⁻¹ CoFe₂O₄ and 8 mg L⁻¹ SBA-15, 20 mg L⁻¹ SiO₂, and 20 mg L⁻¹ Al₂O₃, respectively.

Fig. S5. The variations of the CL response and the pH of the CL reaction with pH of $CoFe_2O_4$ NPs (A), SBA-15 supported $CoFe_2O_4$ NPs (B), SiO₂ supported $CoFe_2O_4$ NPs (C) and Al₂O₃ supported $CoFe_2O_4$ NPs (D). Conditions: 2.0×10^{-6} mol L⁻¹ luminol in 0.1 mol L⁻¹ Na₂CO₃–NaHCO₃ buffer (pH 11.7); CoFe₂O₄ concentration: 2.14 mg L⁻¹; SBA-15, SiO₂, Al₂O₃ supported CoFe₂O₄ were made by 2.14 mg L⁻¹ CoFe₂O₄ and 20 mg L⁻¹ SiO₂, 20 mg L⁻¹ Al₂O₃, and 8 mg L⁻¹ SBA-15, respectively.

Fig. S6. Effects of $CoFe_2O_4$ NPs size on the CL intensity. Conditions: 2.0×10^{-6} mol L⁻¹ luminol in 0.1 mol L⁻¹ Na₂CO₃–NaHCO₃ buffer (pH 11.7); CoFe₂O₄ concentration: 2.14 mg L⁻¹; SBA-15, SiO₂, Al₂O₃ supported CoFe₂O₄ were made by 2.14 mg L⁻¹ CoFe₂O₄ and 8 mg L⁻¹ SBA-15, 20 mg L⁻¹ SiO₂, and 20 mg L⁻¹ Al₂O₃, respectively.

Fig. S7. SEM images of the $CoFe_2O_4$ NPs (A), SiO₂ supported $CoFe_2O_4$ NPs (B), Al₂O₃ supported $CoFe_2O_4$ NPs (C), and SBA-15 supported $CoFe_2O_4$ NPs (D).

Supplementary Material (ESI) for Journal of Material Chemistry A This journal is (c) The Royal Society of Chemistry 2013

Fig. S8. Variation of the zeta-potential under different pH value. Conditions: $CoFe_2O_4$ concentration: 2.14 mg L⁻¹; SBA-15, SiO₂, Al₂O₃ concentration: 8 mg L⁻¹, 20 mg L⁻¹, and 20 mg L⁻¹, respectively. SBA-15, SiO₂, Al₂O₃ supported CoFe₂O₄ were made by 2.14 mg L⁻¹ CoFe₂O₄ and 20 mg L⁻¹ SiO₂, 20 mg L⁻¹ Al₂O₃, and 8 mg L⁻¹ SBA-15, respectively.

Fig. S9. Effects of nitrogen and oxygen on the CL intensity. Conditions: luminol concentration: 2.0×10^{-6} mol L⁻¹ in 0.1 mol L⁻¹ Na₂CO₃–NaHCO₃ buffer (pH 11.7); CoFe₂O₄ concentration: 2.14 mg L⁻¹; SBA-15, SiO₂, Al₂O₃ supported CoFe₂O₄ were made by 2.14 mg L⁻¹ CoFe₂O₄ and 8 mg L⁻¹ SBA-15, 20 mg L⁻¹ SiO₂, and 20 mg L⁻¹ Al₂O₃, respectively.