Supporting Information

Platinum@Regular Indium Oxide Nanooctahedrons as Difunctional Counter Electrode for Dye-Sensitized Solar

Cells †

Bo Zhang,^{*a,b} Yu Hang Li,^a Ju Hua Zhong,^b Hai Min Zhang,^c Hui Jun Zhao^c and Hua Gui Yang^{*a,c}

^a Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.

^b Department of Physics, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.

^c Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University, Queensland
4222, Australia.

Correspondence and requests for materials should be addressed to H.G.Yang or B. Zhang(email: hgyang@ecust.edu.cn or bo.zhang@ecust.edu.cn).

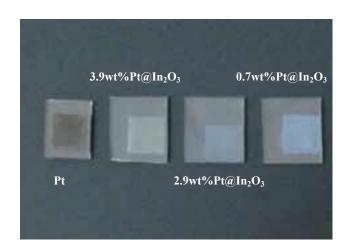
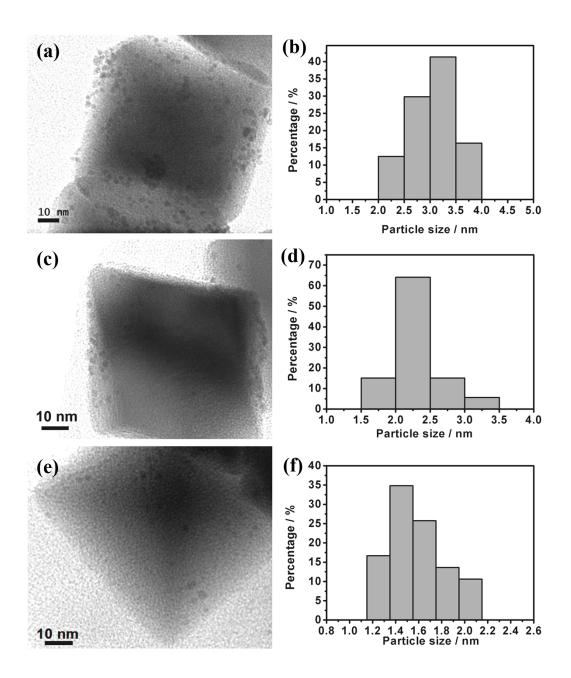



Fig. S1. Digital images of 3.9wt%Pt@In₂O₃, 2.9wt%Pt@In₂O₃, 0.7wt%Pt@In₂O₃, and commonly used Pt on FTO

Fig. S2. TEM images and Histogram showing Pt nanoparticle size distributions of the synthesized 3.9wt%Pt@In₂O₃ (a, b), 2.9wt%Pt@In₂O₃ (c, d) and 0.7wt%Pt@In₂O₃ (e, f) samples, respectively.

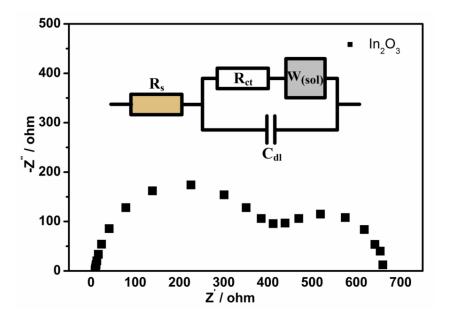


Fig. S3. Electrochemical impedance spectra of the symmetrical cells fabricated with two identical In_2O_3 nanooctahedrons electrodes, and the insert gives the equivalent circuit.