Electronic Supplementary Information (ESI)

Spatial Engineering of Photo-active Sites on g-C₃N₄ for Efficient Solar Hydrogen Generation

Jie Chen, Shaohua Shen*, Penghui Guo, Po Wu, Liejin Guo*

International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xian Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi 710049, China.

E-mail: shshen_xjtu@mail.xjtu.edu.cn (S. Shen), lj-guo@mail.xjtu.edu.cn (L. Guo)

As shown in Fig. S1, the Fe 2p and Zn 2p XPS spectra of the $ZnFe_2O_4$ modified g- C_3N_4 photocatalysts were analyzed. For Fe 2p XPS spetra, the peaks at 711.2 eV should be attributed to Fe³⁺ 2p_{3/2} according to the previous reports.¹ No satellite peaks associated with $2p_{3/2}$ of Fe around 717 eV in Fe₃O₄ were detected, indicating that Fe existed only in Fe³⁺. For Zn 2p XPS spectra, the peak at 1021.3 eV is ascribed to Zn²⁺ atom occupying tetrahedral site in zinc ferrite.¹ The increasing intensity of Fe 2p and Zn 2p peaks should be due to the increased content of $ZnFe_2O_4$. As demonstrated from the XPS quantitative analysis (Table S1), the Zn/Fe weight ratios for ZFO-X were nearly 1:1.7, and the $ZnFe_2O_4$ weight ratio for ZFO-X (X = 10, 25, 50, 100, 200) samples were calculated to be 0.12 wt%, 0.18 wt%, 0.30 wt%, 0.52 wt%, 0.82 wt%, respectively, which confirmed the successful preparation of $ZnFe_2O_4$ on g-C₃N₄. The concentration of $ZnFe_2O_4$ precursor solution was about 0.02 g-Fe/mL, corresponding to 43 mg-ZnFe₂O₄/mL, if the precursors were completely converted. Taking ZFO-200 (Raw materials: 3.0 g of melamine and 200 μ L of ZnFe₂O₄ precursor solution) for example, in the precursor, weight ratio of $ZnFe_2O_4/(melamie+ZnFe_2O_4)$ was 0.29 wt%. While for ZFO-200 photocatalysts, the weight ratio of $ZnFe_2O_4/(g-C_3N_4+ZnFe_2O_4)$ increased to 0.82 wt%. This is because that 3.0 g of melamine could be converted to about 1.2 g of g-C₃N₄ in our experiment, in another word, the productive percent of melamine to $g-C_3N_4$ was about 40%, while the conversion percent of ZnFe₂O₄ precursor to ZnFe₂O₄ was about 100%.

Fig. S1. XPS spectra of Fe 2p and Zn 2p for the ZnFe₂O₄-modified g-C₃N₄ photocatalysts.

Fig. S2. The Tauc plot transformation for all the as-prepared photocatalysts.

Fig. S3. Fluorescence emission decay curves for all the as-prepared ZnFe₂O₄-modified g-C₃N₄ photocatalysts at room temperature. Observation wavelength for all the samples was at 470 nm and the excitation wavelength was at 337 nm. (●) decay curve, (■) Instrument response function (IRF) curve. Solid lines represent the kinetic fit using tri-exponential decay analysis.

As shown in Fig. S4, the almost unchanged Fe 2p and Zn 2p XPS spectra of ZFO-100 after 5-cycle photocatalytic test evidenced that the chemical states of Fe^{3+} and Zn^{2+} were not changed. Moreover, before and after photocatalytic reaction, the Zn contents in ZFO-100 were measured to be 0.14 wt% and 0.13 wt%, while Fe content to be 0.24wt% and 0.25 wt%, which indicated that the content of $ZnFe_2O_4$ did not change. Both the unchanged chemical

states of Fe^{3+}/Zn^{2+} and $ZnFe_2O_4$ content means the good stability of $ZnFe_2O_4$ -modified $g-C_3N_4$ photocatalysts.

Fig. S4. Fe 2p and Zn 2p XPS spectra for as-prepared and used ZFO-100 photocatalyst.

Table S1. XPS quantitative analysis for the as-prepared photocatalysts. (*) ZFO weight ratios were calculated according to the Fe weight ratio; (#) The theoretical ratio of $ZnFe_2O_4/(melamie+ZnFe_2O_4)$ in precursor.

Samples	Actual ratio of the element in the photocatalysts (wt%)											
	Zn (wt%)	Fe (wt%)	O (wt%)	C (wt%)	N (wt%)	ZFO (wt%)*	ZFO initial					
							ratio (wt%) [#]					
ZFO-10	0.033	0.056	1.25	48.54	50.12	0.12	0.025					
ZFO-25	0.052	0.084	2.16	49.56	48.144	0.18	0.038					
ZFO-50	0.083	0.14	2.42	49.23	48.127	0.30	0.075					
ZFO-100	0.14	0.24	3.27	48.44	47.91	0.52	0.15					
ZFO-200	0.22	0.38	4.05	49.68	45.67	0.82	0.29					

Table S2. The average carrier lifetimes (τ_{avg}) for all the as-prepared ZnFe₂O₄-modified g-C₃N₄ photocatalysts.

photocularjotor												
Samples	τ_1	A ₁	τ_2	A ₂	τ_3	A ₃	χ	$ au_{\mathrm{avg}}$				
g-C ₃ N ₄	7.889	0.04386	0.08794	0.7164	1.52	0.2398	1.078	4.252393				
ZFO-10	0.1867	0.5189	1.223	0.3734	5.101	0.1077	0.9311	3.063644				
ZFO-25	4.569	0.06436	1.137	0.8201	4.576	0.1156	0.9033	2.748164				
ZFO-50	5.314	0.08506	0.6832	0.7519	2.092	0.163	0.9294	2.652705				
ZFO-100	1.109	0.3148	0.3352	0.5989	4.881	0.08638	1.009	2.586132				
ZFO-200	1.645	0.06351	4.669	0.01778	0.06107	0.9187	0.9188	2.310741				

Reference

1. S. Bera, A. A. M. Prince, S. Velmurugan, P. S. Raghavan, R. Gopalan, G. Panneerselvam, S. V. Narasimhan. *J. Mater. Sci.*, 2001, **36**, 5379-5384.