Supplementary Information for

Top-Down Fabrication of Three-Dimensional Porous V₂O₅ Hierarchical Microplates with Tunable Porosity for Improved Lithium Batteries[†]

Qinyou An,[‡] Pengfei Zhang,[‡] Qiulong Wei, Liang He, Fangyu Xiong, Jinzhi Sheng, Qinqin Wang and Liqiang Mai*

^a State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, WUT-Harvard Joint Nano Key Laboratory, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China. Fax: +86-27-87644867; Tel: +86-27-87467595; E-mail: mlq518@whut.edu.cn

Figure S1. SEM images of the samples synthesized under different solvothermal times: (a) 0 h, (b) 6 h and (c) 12 h.

Figure S2. EDS mapping of the porous V₂O₅ hierarchical microplate.

Figure S3. SEM images of the porous V₂O₅ hierarchical microplates calcinated at 350 °C.

Figure S4. SEM images of NH₄VO₃ microplates.

Figure S5. TEM image of irregular V_2O_5 particle.

Figure S6. SEM images of quasi-hexagonal microplates annealed at 400 $^{\circ}$ C (a), 450 $^{\circ}$ C (b), 500 $^{\circ}$ C (c) and 600 $^{\circ}$ C (d).

Figure S7. Nitrogen adsorption-desorption isotherms of porous V₂O₅ microplates and corresponding pore size distribution (inset) annealed at 400 °C (a), 450 °C (b), 500 °C (c) and 600 °C (d).

Figure S8. (a, b) SEM images of the sample obtained by calcining the bulk NH₄VO₃ at 350 °C; (c) Nitrogen adsorption-desorption isotherms of the sample and corresponding pore size distribution (inset).

Figure S9. SEM images of the bulk V₂O₅.

Figure S10. Electrochemical characterizations of the bulk V_2O_5 : cycling performance at the current densities of 100 mA g⁻¹ (a), 1000 mA g⁻¹ (b), and 2000 mA g⁻¹ (c); (d) The rate performance.

Figure S11. AC-impedance spectra of V₂O₅ electrodes prepared under different annealing temperatures.

Table S1. The electrochemical performances (cycling performance at relevant current rate or density, and rate capability) of the 3D porous V_2O_5 hierarchical microplates and the reported V_2O_5 materials.

Sample	Voltage range	Capacity (mAh g ⁻¹)/Cycle number	Current rate or density	Rate capacity (mAh g ⁻¹) at relevant current rate or density
As-prepared 3D porous V_2O_5 hierarchical microplates in this work	2.4 - 4 V	123/100	$1 \mathrm{Ag}^{-1}$	112 at 2 A g ⁻¹
V ₂ O ₅ microspheres ¹	$2.5-4\ V$	~ 135/100	$\sim 0.3 \text{ Ag}^{-1}$	92.2 at 2.25 A g ⁻¹
V ₂ O ₅ /CNTs composites ²	$2-4 \ V$	104/200	0.75 Ag^{-1}	169 at 1.5 A g ⁻¹
Porous V ₂ O ₅ nanotubes ³	2.5-4 V	105/250	2 Ag^{-1}	62.5 at 15 A g ⁻¹
3D porous $V_2O_5^4$	2.5-4 V	110/200	$1.5 \mathrm{A g^{-1}}$	86.7 at 8.4 A g^{-1} (Charge at 0.15 A g^{-1})
V ₂ O ₅ nanofibers ⁵	$2.5-4\ V$	127/30	0.02 Ag^{-1}	no given

References

- 1 S. Q. Wang, Z. D. Lu, D. Wang, C. G. Li, C. H. Chen and Y. D. Yin, J. Mater. Chem., 2011, 21, 6365.
- 2 X. Jia, Z. Chen, A. Suwarnasarn, L. Rice, X. Wang, H. Sohn, Q. Zhang, B. M. Wu, F. Wei and Y. Lu, *Energy Environ. Sci.*, 2012, **5**, 6845.
- 3 H. G. Wang, D. L. Ma, Y. Huang and X. B. Zhang, Chem. Eur. J., 2012, 18, 8987.
- 4 S. Q. Wang, S. R. Li, Y. Sun, X. Y. Feng and C. H. Chen, Energy Environ. Sci., 2011, 4, 2854.
- 5 Y. L. Cheah, V. Aravindan and S. Madhavi, ACS Appl. Mater. Interfaces, 2013, 5, 3475.