Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A This journal is © The Royal Society of Chemistry 2014

Journal of Materials Chemistry A

A Novel Complementary Absorbing Donor-Aceptor Pair in Block Copolymers Based on Single Materials Organic Photovoltaics

Sermet Koyuncu,^a* Hsin-Wei Wang,^b Feng Liu,^b Kamil Bugra Toga,^b Weiyin Gu,^b and Thomas P. Russell^b*

^aDepartment of Chemistry, Faculty of Engineering, Canakkale Onsekiz Mart University, 17100, Canakkale (Turkey), e-mail: skoyuncu@comu.edu.tr ^bDepartment of Polymer Science and Engineering, University of Massachusetts Amherst, 120 Governors Drive, Amherst, MA 01003 (USA), e-mail: russell@mail.pse.umass.edu

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A This journal is © The Royal Society of Chemistry 2014

Journal of Materials Chemistry A

General Information: All used reagents were of commercial grade and used without any further purification. Perylene bisimide (PDI) based acrylic monomer was synthesized using standard procedures (Scheme-S1). ^[1,2]

a) pyridine, $Zn(COOH)_2$, 2-ethyl-hexylamine, 3h, reflux; b) t-BuOH, KOH, 2h, reflux; c) DMAc, 6-amino-1hexanol, $Zn(COOH)_2$, 5h, reflux; d) Acryloyl chloride, triethyamine, dichloromethane, 24h, r.t.

Scheme-S1. Synthetic route to Perylene bisimide based acrylic monomer

On the other hand, diketopyrolopyroll (DPP) based low band gap macroinitator was synthesized by using following synthetic route (Scheme S2). 1,2,3^[3], and 6,7^[4] were prepared according to previously published procedures.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A This journal is © The Royal Society of Chemistry 2014

Journal of Materials Chemistry A

a)Tert-amyl alcohol, potassium tert-butoxide, 120 ℃, 2h; b) 2-octyldodecyl bromide, Cs₂CO₃, DMF, 120 ℃; c)NBS, CHCl₃, 0 ℃, 1h; d) K₂CO₃, Toluene/Water, TEAH, Pd(PPh₃)₄, 110 ℃, 5h; e) NaCO₃, THF/Water, 80 ℃, 5h; f) HBr 48%, 12h; g) CuBr/PMDTA, Toluene, 50 ℃, 1h, h) Pd2(dba)3, tri(t-butyl)phosphine, metyl dicyclohexane amine, THF, 55 ℃, 24h.

Scheme-S2. Synthetic route to DPP based low band gap macroinitator.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A This journal is © The Royal Society of Chemistry 2014

Journal of Materials Chemistry A

Bromine terminated DPP-low band gap molecule 4. Under the protection of argon atmosphere, dibromo-DPP **3** (2.04 g, 2 mmol) and 5'-Hexyl-2,2'-bithiophene-5-boronic acid pinacol ester (0.752 g, 2 mmol) was put into a two-neck flask. Then 20 mL of degassed toluene and 5 mL of 2M K₂CO₃ solution in water were added to the mixture. The solution was flushed with nitrogene for 15 min, and then 25 mg of Pd(PPh₃)₄ was added. After another flushing with nitrogene for 15 min, the reactant was heated to 110 °C. After 5 min, 1 mL of tetraethlyammonium hydroxide solution (~40% in H₂O) was added and then the mixture was stirred for 5 h at 110 °C. The reactant was cooled to room temperature and poured into 200 mL of ethanol. The solvent was removed under vacuum and the residue was purified by column chromatography (by eluting with CH₂Cl₂-Hexane (1:1) to yield molecule **4**. (1.12 g, 47% yield). ¹*H*-*NMR* (*CHCl₃-d*): δ *ppm*, 8.96 (*d*, 1*H*), 8.63 (*d*, 1*H*), 7.27 (*d*, 2*H*), 7.22 (*d* 2*H*), 7.05 (*d*, 2*H*), 6.73 (*d*, 1*H*), 4.04 (*d* 2*H*), 3.97 (*d*, 2*H*), 2.82 (*t*, 2*H*), 1.76-0.84 (*m*, 94*H*, *CH aliphatic*).

Vinyl terminated DPP-low band gap molecule 5. Under the protection of Argon atmosphere, a mixture of **4** (0.95 g, 0.8 mmol), 4-Vinylphenylboronic acid (0.148 g, 1 mmol) was put into a two-neck flask. Then 20 mL of degassed THF and 5 mL of 2M Na₂CO₃ solution in water were added to the mixture. The solution was flushed with nitrogene for 15 min, and then 25 mg of Pd(PPh₃)₄ was added. After another flushing with nitrogene for 15 min, the reactant was heated to 110 °C. Then the mixture was stirred for 5 h at 80 °C. The mixture was cooled to room temperature and then poured into a large amount of cold methanol (200 mL). The residue was obtained by filtration and purified by column chromatography (by eluting with CH₂Cl₂-Hexane (2:1) to yield molecule **5** (1.10 g, 92% yield). ¹*H*-*NMR* (*CHCl₃ -d*): δ *ppm*, 8.95 (*d*, 2*H*), 7.69-6.73 (*m*, 21*H*), 5.27 (*d*, 1*H*), 3.96 (*dd*, 4*H*), 2.71 (*t*, 2*H*), 1.91-0.84 (*m*, 94*H*, *CH aliphatic*).

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A This journal is © The Royal Society of Chemistry 2014

Journal of Materials Chemistry A

DPP alkoxyamine macroinitiator. A Schleck flask were dried by Head-gun under vacum and cooled down under argon. Vinyl-terminated DPP **5** (0.85 g, 0.7 mmol) was dissolved in anhydrous THF (75 mL) in this Schlenk flask under argon. To this was added Pd₂(dba)₃ (72 mg), tri(t-butyl)phosphine (60 mg), methyl dicyclohexane amine (3.60 g) and phenylbromide-alkoxylamine **7** (0.3g, 0.75 mmol).The reaction mixture was stirred at 55 °C for 24 hrs. The residue precipitated repeatedly into methanol, then dried under vacuum to give DPP based macroinitiator (0.9 g, 83% yield). ¹*H*-*NMR* (*CHCl*₃ -*d*): δ *ppm*, 8.95 (*d*, 2*H*), 7.69-6.73 (*m*, 21*H*, *CH aromatic*), 4.96 (*d*, 1*H*), 4.09 (*t*, 4*H*), 3.43-3.32 (*dd*, 1*H*), 2.83 (*t*, 2*H*), 2.02-0.25 (*m*, 112*H*, *CH aliphatic*) *MS* [*MALDI-TOF*]: *m*/z 1535.51 [M⁺].

Finally, DPP based macroinitator was used for polymerization of acryloyl based perylene bisimide monomer (Scheme S3).

Scheme-S3. Synthetic route to DPP-PDI block copolymer

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A This journal is © The Royal Society of Chemistry 2014

Journal of Materials Chemistry A

DPP-PDI diblock copolymer. A mixture of DPP alkoxyamine macroinitiator (0.32 g, 0.2 mmol), perylene bisimide acrylate monomer (PDI) (0.72 g, 1 mmol), nitroxide radical (0.46 mg, 0.002 mmol) and 1,2-dichlorobenzene (400 μ L) were subjected to three freeze pump-thaw cycles, sealed under vacuum, and heated at 125 °C for 24 h. The reaction mixture was cooled, dissolved in THF, and precipitated in methanol. The black precipitate was filtered and dried to give the desired DPP-PDI block copolymer (480 mg). GPC: Mn 7200 gmol⁻¹, PDI 1.16. ¹H-NMR (CHCl₃ -d): δ ppm, 8.95 (d, 2H-DPP), 8.65 (d, 8H-PDI), 7.98-6.73 (m, 21H, CH aromatic), 5.20, 4.19, 4.06, 3.51, 2.83, 2.64, 2.25-0.83 (m, CH aliphatic).

References

- 1. M. Sommer, A. S. Lang, M. Thelakkat, *Angewandte Chemie-International Edition* 2008, 47, 7901.
- 2. Q. L. Zhang, A. Cirpan, T. P. Russell, T. Emrick, *Macromolecules* 2009, 42, 1079.
- **3.** O. Lee, A.T. Yiu, P.M. Beaujuge, C.H. Woo, T.W. Holcombe, J.E. Millstone, J.D. Douglas, M.S. Chen, J.M.J. Frechet, *Advanced Materials* **2011**, *23*, 5359.
- E. Kaul, V. Senkovskyy, R. Tkachov, V. Bocharova, H. Komber, M. Stamm, A. Kiriy, *Macromolecules* 2010, 43, 77.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A This journal is © The Royal Society of Chemistry 2014

Figure S1. ¹H-NMR spectrum of bromine terminated DPP- low band gap molecule 5

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A This journal is © The Royal Society of Chemistry 2014

Figure S2. ¹H-NMR spectrum of vinyl terminated DPP- low band gap molecule 6.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A This journal is © The Royal Society of Chemistry 2014

Figure S3. ¹H-NMR spectrum of 2,2,5-Trimethyl-(1'-p-bromophenylethoxy)-4-phenyl-3azahexane (TIPNO) macroinitator.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A This journal is © The Royal Society of Chemistry 2014

Figure S4. ¹H-NMR spectrum of DPP based macroinitator.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A This journal is © The Royal Society of Chemistry 2014

Figure S5. ¹H-NMR spectrum of DPP-PDI block copolymer

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A This journal is © The Royal Society of Chemistry 2014

Figure S6. GPC curve of DPP-PDI block copolymer.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A This journal is © The Royal Society of Chemistry 2014

Figure S7. Absorption spectra of initial compounds and DPP-PDI block copolymer in DCM solution

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A This journal is © The Royal Society of Chemistry 2014

Figure S8. Absorption spectra of initial compounds and DPP-PDI block copolymer on thin film

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A This journal is © The Royal Society of Chemistry 2014

Figure S9. Photoluminescence spectra of initial compounds and DPP-PDI block copolymer in DCM solution

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A This journal is © The Royal Society of Chemistry 2014

Figure S10. AFM and TEM images for the DPP-PDI block copolymer film (from a 2 wt % CF solution at 3000 rpm) a) pristine b) after thermal annealing at 100 °C for 10 min (each scale $3\mu m \times 3\mu m$).

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A This journal is © The Royal Society of Chemistry 2014

Figure S11. AFM and TEM images for the DPP-PDI block copolymer film (from a 2 wt % CB solution at 1000 rpm) a) pristine b) after thermal annealing at 100 °C for 10 min (each scale $3\mu m \times 3\mu m$)