Pd/Cu bimetallic nanoparticles embedded in macroporous ion-exchange resins: An excellent heterogeneous catalyst for the Sonogashira reaction

Debasish Sengupta,¹ Jony Saha,² Goutam De^{*2} and Basudeb Basu^{*1}

¹Department of Chemistry, North Bengal University, Darjeeling 734013, India E-mail: basu_nbu@hotmail.com

²CSIR–Central Glass & Ceramics Research Institute, 196, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India

Supporting Information

1.	Powder XRD of ARF and Pd/Cu-ARF(I)	Fig. S1
2.	SEM images of ARF and Pd/Cu-ARF(I)	Fig. S2

- 3. Comparative chart highlighting improved catalytic performance
- 4. IR, 1H & 13C NMR spectral data for Sonogashira Coupled products
- 5. References
- 6. Scanned copies of NMR Spectra

1. Powder XRD

Fig. S1 XRD of amberlite resin formate (ARF) and the corresponding Pd-Cu incorporated resin (Pd/Cu-ARF(I)).

2. SEM images

Fig. S2 Scanning electron micrographs of ARF (a, b), Pd/Cu-ARF(I) (c, d) at different magnifications.

Sl.	Previous ARF-Pd	Present Pd-Cu/ARF	Other related mono- or bimetallic Cats.
No.	Cat.	Cat.	
1.	Successful only	Works also with aryl	
	with aryl iodides.	bromides bearing	
		electron-withdrawing	
2	No studies with	Works with beteroaryl	
2.	heteroaryl	bromides	
	bromides	bronnaes.	
3.		Our catalyst does not	Sonogashira cross-coupling using
		require any phosphine	Pd/Cu- based catalysts requires
		ligands	phosphine ligands
			References are:
			(a) D. D. Dolliver, B. T. Bhattarai, A.
			Pandey, M. L. Lanier, A. S. Bordelon,
			V S Wills C L Schneider K H
			Shaughnessy I N Moore S M
			Raders, T. S. Snowden, A. S. McKim.
			F. R. Fronczek, J. Org. Chem., 2013,
			78 , 3676;
			(b) V. O. Iaroshenko, S. Ali, T. M.
			Babar, M. S. A. Abbasi, V. Y.
			Sosnovskikh, A. Villinger, A.
			Tolmachev and P. Langer, <i>Tetrahedron</i> , 2013, 69 , 3167:
			(c) D. Gelman and S. L. Buchwald,
			Angew. Chem. Int. Ed., 2003, 42, 5993;
			(d)
			L. Yin and J. Liebscher, Chem. Rev.,
			2007, 107 , 133.)
4.		Our catalyst is effective	Pd NPs are used in Sonogashira
		10r electron-deficient	coupling ligand-free conditions, aryl
		the presence of any	bromides are successful but only in the
		ionic liquids.	presence of ionic liquid
			Ref.: A. R. Gholap, K. Venkatesan, R.
			Pasricha, T. Daniel, R. J. Lahoti, and K.
			V. Srinivasan, J. Org. Chem., 2005, 70,
			4869.
5.		Our catalyst is	One reference (Z. Novak, A. Szabo, J.
		recyclable with no	Repasi, A. Kotschy, J. Org. Chem.
		apparent leaching,	2003, 68, 3327), where the authors have
		experimentally verified.	used neterogeneous Pd/C (5%) along
		knowledge there is no	the Sonogashira reaction However
		such heterogeneous	recycling was tested by adding Cul in
L		such neuerogeneous	recycling was icsicu by adding Cur III

3. Comparative chart highlighting improved catalytic performance

	Pd/Cu bimetallic catalyst that is reported to be recyclable in Sonogashira coupling.	every run. In another reference (BN. Lin, SH. Huang, WY. Wu, CH. Mou, FY. Tsai, <i>Molecules</i> , 2013, 15 , 9157), authors have employed heterogeneous nano-sized MCM-41-Pd catalyst along with CuI in the Sonogashira reaction. Again, recycling ability was tested by using additional co-catalyst in every run. Our catalyst does not require additional copper salt for reuse in the Sonogashira reaction.
6.	The reluctance of deactivated aryl bromide to undergo Sonogashira coupling in the presence of our catalyst could be exploited.	To the best of our knowledge, no such example of chemoselectivity has been reported in the literature using heterogeneous Pd/Cu catalysts.
7.	The present catalytic structure has been examined in more details by SEM, XRD and TEM showing fairly homogeneous distribution of NPs throughout the matrix with the mean diameter of the particle ~4.9 nm.	

4. Spectral data

Table 1, entry 1

MeO

1-Methoxy-4-(2-phenylethynyl) benzene,¹ White crystalline solid, mp 56-58 $^{\rm o}{\rm C}$ (Lit. mp 58-60 $^{\rm o}{\rm C}$)

IR (in KBr): v_{max} 2216 cm⁻¹.

¹H NMR (CDCl₃, 300 MHz): δ/ppm 3.82 (s, 3H, OCH₃), 6.86-6.89 (m, 2H, ArH), 7.31-7.33 (m, 3H, ArH), 7.45-7.53 (m, 4H, ArH); ¹³C NMR (CDCl₃, 75 MHz): δ/ppm 55.3, 88.0, 89.3, 114.0, 115.4, 123.6, 127.9, 128.3, 131.4, 133.0, 159.6.

3-p-Tolylprop-2-ynyl acetate, colourless liquid.

IR (neat) v_{max} 2237, 1747 cm⁻¹.

¹H NMR (CDCl₃, 300 MHz): δ/ppm 2.13 (s, 3H, C<u>H</u>₃CO), 2.35 (s, 3H, ArC<u>H</u>₃), 4.90 (s, 2H, CH₂), 7.12 (d, J = 8.1 Hz, 2H, ArH), 7.34 (d, J = 8.1 Hz, 2H, ArH); ¹³C NMR (CDCl₃, 75 MHz): δ/ppm 20.8, 21.5, 52.9, 82.1, 86.6, 119.0, 129.0, 131.8, 139.0, 170.4.

Table 1, entry 3

3-o-Tolylprop-2-ynyl propionate, colourless liquid.

IR (neat): v_{max} 2229, 1743 cm⁻¹.

¹H NMR (CDCl₃, 300 MHz): δ/ppm 1.19 (t, J = 7.5 Hz, 3H, CH₃), 2.38-2.45 (m, 5H, ArC<u>H₃</u>, C<u>H₂</u>), 4.95 (s, 2H, O-CH₂), 7.10-7.26 (m, 3H, ArH), 7.41 (d, J = 7.5 Hz, 1H, ArH); ¹³C NMR (CDCl₃, 75 MHz): δ/ppm 9.0, 20.6, 27.4, 52.8, 85.3, 86.8, 121.9, 125.5, 128.7, 129.4, 132.2, 140.5, 173.8.

Table 1, entry 4

1-Methoxy-3-(4-phenylbut-1-ynyl)benzene,² Colourless liquid.

IR (neat): $v_{max} 2227 \text{ cm}^{-1}$.

¹H NMR (CDCl₃, 300 MHz): δ/ppm 2.69 (t, J = 7.5 Hz, 2H, CH₂), 2.92 (t, J = 7.5 Hz, 2H, CH₂-Ar), 3.78 (s, 3H, O-CH₃), 6.82-6.85 (m, 1H, ArH), 6.90-6.91 (m, 1H, ArH), 6.95-6.98 (m, 1H, ArH), 7.16-7.32 (m, 6H, ArH); ¹³C NMR (CDCl₃, 75 MHz): 21.7, 35.1, 55.2, 81.2, 89.4, 114.2, 116.4, 124.0, 124.8, 126.3, 128.4, 128.5, 129.2, 140.7, 159.2.

1-(2-(3-nitrophenyl)ethynyl)benzene, yellow solid, 69-71 °C (Lit.¹ mp 67-69 °C)

IR (in KBr): v_{max} 2207 cm⁻¹.

¹H NMR (CDCl₃, 300 MHz): δ/ppm 7.38-7.39 (m, 3H, ArH), 7.50-7.57 (m, 3H, ArH), 7.80-7.84 (m, 1H, ArH), 8.15-8.19 (m, 1H, ArH), 8.37-8.38 (m, 1H, ArH); ¹³C NMR (CDCl₃, 75 MHz): δ/ppm 86.7, 91.9, 122.2, 122.9, 125.2, 126.4, 128.5, 129.0, 129.3, 131.8, 137.2, 148.2.

Table 1, entry 6

3-(3-Bromophenyl)prop-2-ynyl propionate, colourless liquid.

IR (neat): v_{max} 2229, 1743 cm⁻¹.

¹H NMR (CDCl₃, 300 MHz): δ /ppm 1.18 (t, *J* = 7.5 Hz, 3H, CH₃), 2.41 (q, *J* = 7.5 Hz, 2H, CH₂-CH₃), 4.90 (s, 2H, O-CH₂), 7.15-7.21 (m, 1H, ArH), 7.36-7.39 (m, 1H, ArH), 7.45-7.48 (m, 1H, ArH), 7.60-7.61 (m, 1H, ArH); ¹³C NMR (CDCl₃, 75 MHz): 8.9, 27.3, 52.4, 84.4, 84.7, 122.1, 124.1, 129.7, 130.4, 131.9, 134.6, 173.7.

Table 1, entry 7

3-(3-Chlorophenyl)prop-2-ynyl propionate, colourless liquid.

IR (neat): v_{max} 2229, 1743 cm⁻¹.

¹H NMR (CDCl₃, 300 MHz): δ/ppm 1.18 (t, J = 7.2 Hz, 3H, CH₃), 2.40 (q, J = 7.5 Hz, 2H, CH₂-CH₃), 4.90 (s, 2H, O-CH₂), 7.21-7.34 (m, 3H, ArH), 7.44 (s, 1H, ArH); ¹³C NMR (CDCl₃, 75 MHz): 8.9, 27.3, 52.4, 84.3, 84.8, 123.8, 128.9, 129.5, 129.9, 131.7, 134.1, 173.6.

3-(2-Phenylethynyl)quinoline, yellow solid, 65-68 °C (Lit.³ mp 67-70 °C).

IR (in KBr): v_{max} 2218 cm⁻¹.

¹H NMR (CDCl₃, 300 MHz): 7.38-7.41 (m, 3H, ArH), 7.55-7.61 (m, 3H, ArH), 7.70-7.76 (m, 1H, ArH), 7.79-7.82 (m, 1H, ArH), 8.12 (d, J = 8.4 Hz, 1H, ArH), 8.32 (d, J = 1.8 Hz, 1H, ArH), 9.00 (d, 1H, J = 1.8 Hz, ArH); ¹³C NMR (CDCl₃, 75 MHz): 86.4, 92.7, 117.5, 122.5, 127.3, 127.4, 127.6, 128.5, 128.8, 129.1, 130.2, 131.7, 138.5, 146.4, 151.9.

Table 1, entry 12A

1-(2-(3-Bromophenyl)ethynyl)-4-methylbenzene,⁴ White crystalline solid, mp 91-93 $^{\circ}$ C (Lit. mp 89-91 $^{\circ}$ C)

IR (in KBr): v_{max} 2222 cm⁻¹.

¹H NMR (CDCl₃, 300 MHz): δ/ppm 2.37 (s, 3H, OCH₃), 7.14-7.25 (m, 3H, ArH), 7.40-7.46 (m, 4H, ArH), 7.67 (t, *J* = 1.8 Hz, 1H, ArH); ¹³C NMR (CDCl₃, 75 MHz): δ/ppm 21.5, 87.1, 90.9, 119.6, 122.1, 125.5, 129.1, 129.7, 130.0, 131.1, 131.5, 134.2, 138.8.

Table 1, entry 12B

1-(2-(3-Biphenyl)ethynyl)-4-methylbenzene, White Solid, mp 69-71 °C.

¹H NMR (CDCl₃, 300 MHz): δ/ppm 2.37 (s, 3H, OCH₃), 7.16 (d, *J* = 8.1 Hz, 2H, ArH), 7.36-7.53 (m, 8H, ArH), 7.59-7.62 (m, 2H, ArH), 7.76-7.77 (m, 1H, ArH); ¹³C NMR (CDCl₃, 75 MHz): δ/ppm 21.5, 88.7, 89.7, 120.2, 124.0, 126.9, 127.1, 127.6, 128.7, 128.8, 129.1, 130.3, 131.5, 138.4, 140.4, 141.4.

5. References

1. P. Li, L. Wangand and H. Li, *Tetrahedron*, 2005, **61**, 8633.

- 2. B. Basu, S. Das, P. Das, B. Mandal, D. Banerjee and F. Almqvist, *Synthesis*, 2009, 1137.
- 3. U. S. Sorensen and E. P. Villar, *Tetrahedron*, 2005, **61**, 2697.
- 4. O. Akihiro, T. Hisataka and O. Junzo, *Chem. Asian J.*, 2006, 1, 430.

Table 1, entry 6

Table 1, entry 12A

Table 1, entry 12B

.