Supporting Information for

Versatile Superhydrophobic and Photocatalytic Films Generated from TiO₂-SiO₂@PDMS and their Applications on Fabrics

Zheng-Yan Deng, Wei Wang, Li-Hua Mao, Cai-Feng Wang, Su Chen*

State Key Laboratory of Material-Oriented Chemical Engineering and College of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 210009, P. R. China

Figure S1. FT-IR spectra of polymer PDMS (blue), hydrophobic TiO_2 -SiO₂ (red), and TiO_2 -SiO₂ @ PDMS hybrid powder (black).

The FTIR spectra of hydrophobic TiO_2 -SiO₂ hybrid gels should have been assigned to the hydrolysis of HMDS monomers to replace the Si-OH or Ti-OH groups with $-Si-(CH_3)_3$ and Ti-Si-(CH₃)₃ groups, which are attributed to the hydrophobicity

of hybid gels. The absorption bands observed at 2973 and 2926 cm⁻¹ are due to C–H stretching. For PDMS-containing hybrid powder, the additional absorption bands at about 1261 cm⁻¹ (Si-CH₃ stretching) and 845 (CH₂ rocking) conform the existence of -CH₃ groups on the surface of modified hybrid gels. It is worth noting that the peak intensity of at 1086 cm⁻¹ markedly increases and becomes higher than that hybrid powder gels and pure PDMS, which results in the introduction of Si-O-Si stretching vibrations.

Figure S2. Effect of PDMS concentration on water contact angle (WCA) values

Figure S3. SEM images of the polyester/cotton fabrics. (a) The pristine fabrics, scale bar: $50 \mu m$. (b) Treated fabrics, scale bar: $50 \mu m$