Electronic Supplementary Information (ESI) for:

Design and synthesis of stable supported-CaO sorbents for CO₂ capture

Nikki J. Amos,^a Meilina Widyawati,^a Sven Kureti,^b Dimosthenis Trimis,^c Andrew I. Minett,

Andrew T. Harris,*^a and Tamara L. Church*^a

^a Laboratory for Sustainable Technology, University of Sydney, NSW 2006 Australia.

^b Department of Energy Process Engineering and Chemical Engineering, Technische Universität

Bergakademie Freiberg, Fuchsmühlenweg 9, D-09596 Freiberg, Germany.

^c Institute of Thermal Engineering, Technische Universität Bergakademie Freiberg, Gustav-Zeuner-Strasse 7, D-09596 Freiberg, Germany.

*email: andrew.harris@sydney.edu.au; tamara.church@sydney.edu.au

Contents

Item	Page
1. Characterization data for Ca _x Al _y O _z -based materials	S2
2. Characterization data for SiO ₂ /SiC-based materials	S4
3. X-ray diffraction patterns of the supports	S5
4. Determination of maximum carbonation levels for Ca _x Al _y O _z sorbents	S6
5. Synthesis and characterization of $CaO/meso-Ca_xAl_yO_z(20)$	S6

1. Characterization data for Ca_xAl_yO_z-based materials

Figure S1. N₂ physisorption isotherms (measured at -196 °C) and pore size distributions (insets) of (a) *meso*-Ca_xAl_yO_z and (b) CaO/*meso*-Ca_xAl_yO_z.

Figure S2. Transmission electron microscope images of meso-Ca_xAl_yO_z.

Figure S3. Transmission electron microscope images of CaO/meso-CaxAlyOz.

S-2

Figure S4. N₂ physisorption isotherms (measured at -196 °C) and pore size distributions (insets) of (a) *hier*-Ca_xAl_yO_z and (b) CaO/*hier*-Ca_xAl_yO_z.

Figure S5. Transmission electron microscope images of *hier*-Ca_xAl_yO_z.

Figure S6. Transmission electron microscope images of CaO/hier-Ca_xAl_yO_z.

2. Characterization data for SiO₂/SiC-based materials

Figure S7. N₂ physisorption isotherms (measured at -196 °C) and pore size distributions (insets) of (a) *meso*-SiC and (b) CaO/*meso*-SiC.

Figure S8. TEM (left) and SEM (right) images of SBA-15. TEM image of SBA-15, showing highly ordered mesoporosity. For TEM, the ultrafine sample that was obtained by sonicating the SBA-15 in ethanol was dispersed on a copper grid for measurement, and imaged using a 120-kV electron beam. For SEM, The sample was put on carbon tape and imaged using a secondary-electron detector and a 2-kV electron beam.

Figure S9. TEM (left) and SEM (right) images of *meso*-SiC. The ultrafine sample that was obtained by sonicating *meso*-SiC in ethanol was dispersed on a copper grid for measurement, and imaged using a 120-kV electron beam. For SEM, the sample was put on carbon tape and imaged using a secondary-electron detector and a 2-kV electron beam.

3. X-ray diffraction patterns of the supports

Figure S10. X-ray diffraction patterns of meso-Ca_xAl_yO_z, hier-Ca_xAl_yO_z, and meso-SiC. Each pattern was normalised and offset for plotting.

4. Determination of maximum carbonation levels for Ca_xAl_yO_z sorbents

calcium aluminate sorbents. Samples were heated to 700 $^\circ C$ in 100% $CO_2.$

5. Synthesis and characterization of CaO/meso-Ca_xAl_yO_z(20)

CaO/*meso*-**Ca**_x**Al**_y**O**_z(20) was synthesised using a sol-gel synthesis procedure that employed evaporation-induced self-assembly. Calcium aluminate with a 4:1 ratio of Al³⁺ and Ca²⁺ ions was prepared by combining the structure-directing agent PEO₂₀PPO₇₀PEO₂₀ (Pluronic P123, Aldrich, 2.0 g, $M_n = 5800$ g mol⁻¹) and ethanol (absolute, 20.0 mL) and stirring at 40 °C until the surfactant dissolved. Ca(NO₃)₂•4H₂O (Fluka, \geq 99.0%, 0.95 g) was then added to this solution and stirred vigorously until it dissolved. In a separate solution, aluminium isopropoxide (Sigma Aldrich, 3.27 g) was combined with nitric acid (3.2 mL, 67 wt.%) and ethanol and stirred at 40°C until dissolved. These solutions were then combined and stirred at room temperature for 5 h, then aged at 60 °C for 48 h under flowing N₂. The dried calcium aluminate sol was then calcined by heating in a GSL-1300X tube furnace (MTI) in air at 1.5 °C/min to 700 °C and holding at that temperature for 4 h.

Figure S12. N₂ physisorption isotherm (measured at -196 °C) and pore size distribution (inset) of CaO/meso-Ca_xAl_yO_z(20).

Figure S13. XRD pattern of CaO/meso-Ca_xAl_yO_z(20).

Figure S14. Performance of CaO/meso-Ca₃Al₃O₂(20) in 30 calcination-carbonation cycles (carbonation: 700 °C, 15% CO₂ in N₂, 30 min; calcination: 850 °C, N₂, 10 min).